ON THE MINIMUM DIAMETER SPANNING TREE PROBLEM

被引:66
|
作者
HASSIN, R
TAMIR, A
机构
[1] Department of Statistics and Operations Research, School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv
关键词
ALGORITHMS; COMBINATORIAL PROBLEMS; MINIMUM DIAMETER SPANNING TREE; ABSOLUTE; 1-CENTER;
D O I
10.1016/0020-0190(94)00183-Y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We point out a relation between the minimum diameter spanning tree of a graph and its absolute 1-center. We use this relation to solve the diameter problem and an extension of its efficiently.
引用
收藏
页码:109 / 111
页数:3
相关论文
共 50 条
  • [1] Geometric Minimum Diameter Minimum Cost Spanning Tree Problem
    Seo, Dae Young
    Lee, D. T.
    Lin, Tien-Ching
    [J]. ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2009, 5878 : 283 - +
  • [2] A Heuristic for the Bounded Diameter Minimum Spanning Tree Problem
    Singh, Kavita
    Sundar, Shyam
    [J]. ISMSI 2018: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS, METAHEURISTICS & SWARM INTELLIGENCE, 2018, : 84 - 88
  • [3] Diameter Constrained Fuzzy Minimum Spanning Tree Problem
    Abu Nayeem, Sk. Md.
    Pal, Madhumangal
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2013, 6 (06) : 1040 - 1051
  • [4] Stochastic Bounded Diameter Minimum Spanning Tree Problem
    Torkestani, Javad Akbari
    [J]. FUNDAMENTA INFORMATICAE, 2015, 140 (02) : 205 - 219
  • [5] Diameter Constrained Fuzzy Minimum Spanning Tree Problem
    Sk. Md. Abu Nayeem
    Madhumangal Pal
    [J]. International Journal of Computational Intelligence Systems, 2013, 6 : 1040 - 1051
  • [6] A hybrid heuristic for the diameter constrained minimum spanning tree problem
    Abilio Lucena
    Celso C. Ribeiro
    Andréa C. Santos
    [J]. Journal of Global Optimization, 2010, 46 : 363 - 381
  • [7] A polyhedral study of the diameter constrained minimum spanning tree problem
    Gouveia, Luis
    Leitner, Markus
    Ljubic, Ivana
    [J]. DISCRETE APPLIED MATHEMATICS, 2020, 285 (285) : 364 - 379
  • [8] A hybrid heuristic for the diameter constrained minimum spanning tree problem
    Lucena, Abilio
    Ribeiro, Celso C.
    Santos, Andrea C.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2010, 46 (03) : 363 - 381
  • [9] Parallel Heuristics for the Bounded Diameter Minimum Spanning Tree Problem
    Patvardhan, C.
    Prakash, V. Prem
    Srivastav, A.
    [J]. 2014 Annual IEEE India Conference (INDICON), 2014,
  • [10] Improved heuristics for the bounded-diameter minimum spanning tree problem
    Alok Singh
    Ashok K. Gupta
    [J]. Soft Computing, 2007, 11 : 911 - 921