EXISTENCE OF GLOBAL WEAK SOLUTIONS TO FOKKER-PLANCK AND NAVIER-STOKES-FOKKER-PLANCK EQUATIONS IN KINETIC MODELS OF DILUTE POLYMERS

被引:4
|
作者
Barrett, John W. [1 ]
Suli, Endre [2 ]
机构
[1] Imperial Coll, Dept Math, London SW7 2AZ, England
[2] Univ Oxford, Math Inst, Oxford OX1 3LB, England
关键词
Existence of weak solutions; dilute polymer; kinetic theory; Navier-Stokes equation; Fokker-Planck equation;
D O I
10.3934/dcdss.2010.3.371
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This survey paper reviews recent developments concerning the existence of global weak solutions to Fokker-Planck equations with unbounded drift terms, and coupled Navier-Stokes-Fokker-Planck systems of partial differential equations, that arise in finitely extensible nonlinear elastic (FENS) type kinetic models of incompressible dilute polymeric fluids in the case of general noncorotational flow.
引用
收藏
页码:371 / 408
页数:38
相关论文
共 50 条
  • [31] GEOMETRIC FOKKER-PLANCK EQUATIONS
    Lebeau, Gilles
    PORTUGALIAE MATHEMATICA, 2005, 62 (04) : 469 - 530
  • [32] Global weak solutions for a Vlasov–Fokker–Planck/Navier–Stokes system with nonhomogeneous boundary data
    Yue Li
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [33] Deformed fokker-planck equations
    Ho, Choon-Lin
    Sasaki, Ryu
    PROGRESS OF THEORETICAL PHYSICS, 2007, 118 (04): : 667 - 674
  • [34] Global solutions to a nonlinear Fokker-Planck equation
    Zhang, Xingang
    Liu, Zhe
    Ding, Ling
    Tang, Bo
    AIMS MATHEMATICS, 2023, 8 (07): : 16115 - 16126
  • [35] Existence, Stability and Regularity of Periodic Solutions for Nonlinear Fokker-Planck Equations
    Lucon, Eric
    Poquet, Christophe
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (01) : 633 - 671
  • [36] THE KINETIC FOKKER-PLANCK EQUATION WITH WEAK CONFINEMENT FORCE
    Cao, Chuqi
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2019, 17 (08) : 2281 - 2308
  • [37] Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients
    Le Bris, C.
    Lions, P. -L.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (07) : 1272 - 1317
  • [38] The existence of mild and classical solutions for time fractional Fokker-Planck equations
    Peng, Li
    Zhou, Yong
    MONATSHEFTE FUR MATHEMATIK, 2022, 199 (02): : 377 - 410
  • [39] Existence Results for Fokker-Planck Equations in Hilbert Spaces
    Bogachev, Vladimir
    Da Prato, Giuseppe
    Roeckner, Michael
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS VI, 2011, 63 : 23 - +
  • [40] Global existence for a nonlocal and nonlinear Fokker-Planck equation
    Dreyer, Wolfgang
    Huth, Robert
    Mielke, Alexander
    Rehberg, Joachim
    Winkler, Michael
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (02): : 293 - 315