EXISTENCE OF GLOBAL WEAK SOLUTIONS TO FOKKER-PLANCK AND NAVIER-STOKES-FOKKER-PLANCK EQUATIONS IN KINETIC MODELS OF DILUTE POLYMERS

被引:4
|
作者
Barrett, John W. [1 ]
Suli, Endre [2 ]
机构
[1] Imperial Coll, Dept Math, London SW7 2AZ, England
[2] Univ Oxford, Math Inst, Oxford OX1 3LB, England
关键词
Existence of weak solutions; dilute polymer; kinetic theory; Navier-Stokes equation; Fokker-Planck equation;
D O I
10.3934/dcdss.2010.3.371
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This survey paper reviews recent developments concerning the existence of global weak solutions to Fokker-Planck equations with unbounded drift terms, and coupled Navier-Stokes-Fokker-Planck systems of partial differential equations, that arise in finitely extensible nonlinear elastic (FENS) type kinetic models of incompressible dilute polymeric fluids in the case of general noncorotational flow.
引用
收藏
页码:371 / 408
页数:38
相关论文
共 50 条
  • [21] DETERMINATION OF LYAPUNOV EXPONENTS BY WEAK SOLUTIONS OF FOKKER-PLANCK EQUATIONS
    KARCH, G
    WEDIG, W
    PROBABILISTIC ENGINEERING MECHANICS, 1995, 10 (03) : 135 - 141
  • [22] TIME AVERAGES FOR KINETIC FOKKER-PLANCK EQUATIONS
    Brigati, Giovanni
    KINETIC AND RELATED MODELS, 2022, : 524 - 539
  • [23] Sobolev embeddings for kinetic Fokker-Planck equations
    Pascucci, Andrea
    Pesce, Antonello
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (07)
  • [24] GLOBAL REGULARITY OF SOLUTIONS OF COUPLED NAVIER-STOKES EQUATIONS AND NONLINEAR FOKKER PLANCK EQUATIONS
    Constantin, Peter
    Seregin, Gregory
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 26 (04) : 1185 - 1196
  • [25] Lp-solutions of Fokker-Planck equations
    Wei, Jinlong
    Liu, Bin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 85 : 110 - 124
  • [26] Operator solutions for fractional Fokker-Planck equations
    Gorska, K.
    Penson, K. A.
    Babusci, D.
    Dattoli, G.
    Duchamp, G. H. E.
    PHYSICAL REVIEW E, 2012, 85 (03):
  • [27] ON THE GAUSSIAN APPROXIMATION FOR SOLUTIONS OF FOKKER-PLANCK EQUATIONS
    KHARRASOV, MK
    ABDULLIN, AU
    DOKLADY AKADEMII NAUK, 1994, 335 (01) : 32 - 34
  • [28] Generalized solutions to nonlinear Fokker-Planck equations
    Barbu, Viorel
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (04) : 2446 - 2471
  • [29] Invariants of Fokker-Planck equations
    Sumiyoshi Abe
    The European Physical Journal Special Topics, 2017, 226 : 529 - 532
  • [30] Invariants of Fokker-Planck equations
    Abe, Sumiyoshi
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (03): : 529 - 532