Global solutions to a nonlinear Fokker-Planck equation

被引:0
|
作者
Zhang, Xingang [1 ]
Liu, Zhe [2 ]
Ding, Ling [3 ]
Tang, Bo [3 ,4 ]
机构
[1] Nanyang Normal Univ, Sch Comp Sci & Technol, Nanyang 473061, Henan, Peoples R China
[2] Nanyang Normal Univ, Nanyang 473061, Henan, Peoples R China
[3] Hubei Univ Arts & Sci, Sch Math & Stat, Xiangyang 441053, Hubei, Peoples R China
[4] Hubei Univ Arts & Sci, Hubei Key Lab Power Syst Design & Test Elect Vehic, Xiangyang 441053, Hubei, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 07期
基金
中国国家自然科学基金;
关键词
nonlinear Fokker-Planck equation; global existence; energy method; Cauchy problem; Priori estimates; CLASSICAL-SOLUTIONS; BOLTZMANN-EQUATION; EXISTENCE;
D O I
10.3934/math.2023822
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct global solutions to the Cauchy problem on a nonlinear Fokker -Planck equation near Maxwellian with small-amplitude initial data in Sobolev space Hx2L2v by a refined nonlinear energy method. Compared with the results of Liao et al. (Global existence and decay rates of the solutions near Maxwellian for non-linear Fokker-Planck equations, J. Stat. Phys., 173 (2018), 222-241.), the regularity assumption on the initial data is much weaker.
引用
收藏
页码:16115 / 16126
页数:12
相关论文
共 50 条
  • [1] Stabilization of Solutions of the Nonlinear Fokker-Planck Equation
    Kon'kov A.A.
    [J]. Journal of Mathematical Sciences, 2014, 197 (3) : 358 - 366
  • [2] Global existence for a nonlocal and nonlinear Fokker-Planck equation
    Dreyer, Wolfgang
    Huth, Robert
    Mielke, Alexander
    Rehberg, Joachim
    Winkler, Michael
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (02): : 293 - 315
  • [3] The Evolution to Equilibrium of Solutions to Nonlinear Fokker-Planck Equation
    Barbu, Viorel
    Roeckner, Michael
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2023, 72 (01) : 89 - 131
  • [4] REGULARITY OF WEAK SOLUTIONS OF THE NONLINEAR FOKKER-PLANCK EQUATION
    Tassa, Tamir
    [J]. MATHEMATICAL RESEARCH LETTERS, 1996, 3 (04) : 475 - 490
  • [5] Exact solutions for a generalized nonlinear fractional Fokker-Planck equation
    Ma, Junhai
    Liu, Yanqin
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (01) : 515 - 521
  • [6] Anomalous diffusion, nonlinear fractional Fokker-Planck equation and solutions
    Lenzi, EK
    Malacarne, LC
    Mendes, RS
    Pedron, IT
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 319 : 245 - 252
  • [7] SOLUTIONS OF FOKKER-PLANCK EQUATION WITH APPLICATIONS IN NONLINEAR RANDOM VIBRATION
    LIU, SC
    [J]. BELL SYSTEM TECHNICAL JOURNAL, 1969, 48 (06): : 2031 - +
  • [8] EXPLICIT SOLUTIONS OF THE FOKKER-PLANCK EQUATION
    ENGLEFIELD, MJ
    [J]. DIFFERENTIAL EQUATIONS //: PROCEEDINGS OF THE EQUADIFF CONFERENCE, 1989, 118 : 223 - 230
  • [9] FACTORIZATION OF THE SOLUTIONS OF THE FOKKER-PLANCK EQUATION
    Massou, S.
    Tchoffo, M.
    Moussiliou, S.
    Essoun, A.
    Beilinson, A. A.
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2012, 10 (02): : 161 - 170
  • [10] FOKKER-PLANCK EQUATION APPLIED TO NONLINEAR SYSTEMS
    KRISTIANSSON, L
    [J]. ERICSSON TECHNICS, 1968, 24 (03): : 161 - +