Global solutions to a nonlinear Fokker-Planck equation

被引:0
|
作者
Zhang, Xingang [1 ]
Liu, Zhe [2 ]
Ding, Ling [3 ]
Tang, Bo [3 ,4 ]
机构
[1] Nanyang Normal Univ, Sch Comp Sci & Technol, Nanyang 473061, Henan, Peoples R China
[2] Nanyang Normal Univ, Nanyang 473061, Henan, Peoples R China
[3] Hubei Univ Arts & Sci, Sch Math & Stat, Xiangyang 441053, Hubei, Peoples R China
[4] Hubei Univ Arts & Sci, Hubei Key Lab Power Syst Design & Test Elect Vehic, Xiangyang 441053, Hubei, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 07期
基金
中国国家自然科学基金;
关键词
nonlinear Fokker-Planck equation; global existence; energy method; Cauchy problem; Priori estimates; CLASSICAL-SOLUTIONS; BOLTZMANN-EQUATION; EXISTENCE;
D O I
10.3934/math.2023822
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct global solutions to the Cauchy problem on a nonlinear Fokker -Planck equation near Maxwellian with small-amplitude initial data in Sobolev space Hx2L2v by a refined nonlinear energy method. Compared with the results of Liao et al. (Global existence and decay rates of the solutions near Maxwellian for non-linear Fokker-Planck equations, J. Stat. Phys., 173 (2018), 222-241.), the regularity assumption on the initial data is much weaker.
引用
收藏
页码:16115 / 16126
页数:12
相关论文
共 50 条
  • [31] Very slow stabilization for a nonlinear Fokker-Planck equation
    Fila, Marek
    Stuke, Hannes
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 138 : 93 - 110
  • [32] Multi-diffusive nonlinear Fokker-Planck equation
    Ribeiro, Mauricio S.
    Casas, Gabriela A.
    Nobre, Fernando D.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (06)
  • [33] Generalized Fokker-Planck equation: Derivation and exact solutions
    Denisov, S. I.
    Horsthemke, W.
    Haenggi, P.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2009, 68 (04): : 567 - 575
  • [34] High fidelity numerical solutions of the Fokker-Planck equation
    Wojtkiewicz, SF
    Bergman, LA
    Spencer, BF
    [J]. STRUCTURAL SAFETY AND RELIABILITY, VOLS. 1-3, 1998, : 933 - 940
  • [35] Nonlinear Fokker-Planck Equation in the Model of Asset Returns
    Shapovalov, Alexander
    Trifonov, Andrey
    Masalova, Elena
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2008, 4
  • [36] Solutions of the Fokker-Planck equation for a Morse isospectral potential
    Polotto, F.
    Araujo, M. T.
    Drigo Filho, E.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (01)
  • [37] On new invariant solutions of generalized Fokker-Planck equation
    Yao, RX
    Li, ZB
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 41 (05) : 665 - 668
  • [38] Similarity solutions of a class of perturbative Fokker-Planck equation
    Lin, Wen-Tsan
    Ho, Choon-Lin
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (07)
  • [39] Fokker-Planck equation and subdiffusive fractional Fokker-Planck equation of bistable systems with sinks
    Chow, CW
    Liu, KL
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 : 87 - 106
  • [40] Nonlinear Fokker-Planck equation with reflecting boundary conditions
    Ciotir, Ioana
    Fayad, Rim
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 321 : 296 - 317