High fidelity numerical solutions of the Fokker-Planck equation

被引:0
|
作者
Wojtkiewicz, SF [1 ]
Bergman, LA [1 ]
Spencer, BF [1 ]
机构
[1] Univ Illinois, Urbana, IL 61801 USA
关键词
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The finite element method has been employed to numerically solve Fokker-Planck equations for systems of dimension two and three (Spencer and Bergman [1994]; Wojtkiewicz, et al. [1995], Bergman, et al. [1996]). Those results provided a satisfactory level of accuracy (i. e., O(10(-4))) over the entire computational domain. However, this level may not be deemed acceptable for analyzing the reliability of certain critical systems, where failure probabilities on the order of 10(-10) or smaller are commonplace. Consequently, higher order discretization schemes have been developed and implemented to ascertain the limits of accuracy of several standard finite difference techniques, particularly in the tails of the response distribution. Herein, results for several representative systems of dimension two are discussed.
引用
收藏
页码:933 / 940
页数:8
相关论文
共 50 条
  • [1] Numerical Solutions of the Fokker-Planck Equation for Magnetic Nanoparticles
    Ansalone, D. P.
    Ragusa, C.
    d'Aquino, M.
    Serpico, C.
    Bertotti, G.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2009, 45 (11) : 5216 - 5219
  • [2] NUMERICAL SOLUTION OF FOKKER-PLANCK EQUATION
    KULSRUD, RM
    SUN, YC
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (10): : 1262 - 1262
  • [3] EXPLICIT SOLUTIONS OF THE FOKKER-PLANCK EQUATION
    ENGLEFIELD, MJ
    [J]. DIFFERENTIAL EQUATIONS //: PROCEEDINGS OF THE EQUADIFF CONFERENCE, 1989, 118 : 223 - 230
  • [4] FACTORIZATION OF THE SOLUTIONS OF THE FOKKER-PLANCK EQUATION
    Massou, S.
    Tchoffo, M.
    Moussiliou, S.
    Essoun, A.
    Beilinson, A. A.
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2012, 10 (02): : 161 - 170
  • [5] Numerical solutions of the Fokker-Planck equation using the finite difference method
    Tamura, S
    Kimura, K
    [J]. ASIA-PACIFIC VIBRATION CONFERENCE 2001, VOL 1, PROCEEDINGS, 2001, : 335 - 339
  • [6] Numerical method for the nonlinear Fokker-Planck equation
    Zhang, DS
    Wei, GW
    Kouri, DJ
    Hoffman, DK
    [J]. PHYSICAL REVIEW E, 1997, 56 (01): : 1197 - 1206
  • [7] EXACT-SOLUTIONS OF FOKKER-PLANCK EQUATION
    LEMOU, M
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (06): : 579 - 583
  • [8] NUMERICAL EXPERIENCES ON NONLINEAR FOKKER-PLANCK EQUATION
    BRAUN, JC
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B, 1971, 272 (20): : 1178 - &
  • [9] PROPER AND NORMAL SOLUTIONS OF THE FOKKER-PLANCK EQUATION
    MEYER, J
    SCHROTER, J
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1981, 76 (03) : 193 - 246
  • [10] EXACT-SOLUTIONS OF A FOKKER-PLANCK EQUATION
    ENGLEFIELD, MJ
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1988, 52 (1-2) : 369 - 381