Numerical Solutions of the Fokker-Planck Equation for Magnetic Nanoparticles

被引:0
|
作者
Ansalone, D. P. [1 ]
Ragusa, C. [1 ]
d'Aquino, M. [2 ]
Serpico, C. [3 ]
Bertotti, G. [4 ]
机构
[1] Politecn Torino, Dept Elect Engn, I-10129 Turin, Italy
[2] Univ Napoli Parthenope, Dipartimento Tecnol, I-80143 Naples, Italy
[3] Univ Naples Federico 2, Dept Elect Engn, I-80125 Naples, Italy
[4] Ist Nazl Ric Metrolog, I-10135 Turin, Italy
关键词
Fokker-Planck equations; magnetic particle; numerical analysis;
D O I
10.1109/TMAG.2009.2031073
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a method to solve numerically the Fokker-Planck equation for a uniformly magnetized nanoparticle. This approach is an algebraic formulation scheme that uses integral variables associated with space and time elements. This new method is compared with a spectral collocation method, similar to that referenced in a previous article. The stationary distribution, the eigenvalues of the Fokker-Planck operator, and the self-covariance function obtained from the two approaches are compared. The numerically calculated stationary distributions are also checked against analytical results.
引用
收藏
页码:5216 / 5219
页数:4
相关论文
共 50 条
  • [1] High fidelity numerical solutions of the Fokker-Planck equation
    Wojtkiewicz, SF
    Bergman, LA
    Spencer, BF
    [J]. STRUCTURAL SAFETY AND RELIABILITY, VOLS. 1-3, 1998, : 933 - 940
  • [2] NUMERICAL SOLUTION OF FOKKER-PLANCK EQUATION
    KULSRUD, RM
    SUN, YC
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (10): : 1262 - 1262
  • [3] EXPLICIT SOLUTIONS OF THE FOKKER-PLANCK EQUATION
    ENGLEFIELD, MJ
    [J]. DIFFERENTIAL EQUATIONS //: PROCEEDINGS OF THE EQUADIFF CONFERENCE, 1989, 118 : 223 - 230
  • [4] FACTORIZATION OF THE SOLUTIONS OF THE FOKKER-PLANCK EQUATION
    Massou, S.
    Tchoffo, M.
    Moussiliou, S.
    Essoun, A.
    Beilinson, A. A.
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2012, 10 (02): : 161 - 170
  • [5] Numerical solutions of the Fokker-Planck equation using the finite difference method
    Tamura, S
    Kimura, K
    [J]. ASIA-PACIFIC VIBRATION CONFERENCE 2001, VOL 1, PROCEEDINGS, 2001, : 335 - 339
  • [6] Numerical method for the nonlinear Fokker-Planck equation
    Zhang, DS
    Wei, GW
    Kouri, DJ
    Hoffman, DK
    [J]. PHYSICAL REVIEW E, 1997, 56 (01): : 1197 - 1206
  • [7] EXACT-SOLUTIONS OF FOKKER-PLANCK EQUATION
    LEMOU, M
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (06): : 579 - 583
  • [8] NUMERICAL EXPERIENCES ON NONLINEAR FOKKER-PLANCK EQUATION
    BRAUN, JC
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B, 1971, 272 (20): : 1178 - &
  • [9] PROPER AND NORMAL SOLUTIONS OF THE FOKKER-PLANCK EQUATION
    MEYER, J
    SCHROTER, J
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1981, 76 (03) : 193 - 246
  • [10] EXACT-SOLUTIONS OF A FOKKER-PLANCK EQUATION
    ENGLEFIELD, MJ
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1988, 52 (1-2) : 369 - 381