The Evolution to Equilibrium of Solutions to Nonlinear Fokker-Planck Equation

被引:3
|
作者
Barbu, Viorel [1 ]
Roeckner, Michael [2 ,3 ]
机构
[1] Romanian Acad, Octav Mayer Inst Math, Blvd Carol I 9, Iasi, Romania
[2] Univ Bielefeld, Fak Mathemat, Univ Str 25, D-33615 Bielefeld, Germany
[3] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
关键词
Fokker-Planck equation; m-accretive operator; probability density; Lyapunov function; H-theorem; McKean-Vlasov stochastic differential equation; nonlinear distorted Brownian motion;
D O I
10.1512/iumj.2023.72.9074
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
One proves the H-theorem for mild solutions to a nondegenerate, nonlinear Fokker-Planck equation (1) u(t) - Delta beta(u) + div(E(x)b(u)u) = 0, t >= 0, x is an element of R-d, and-under appropriate hypotheses on beta, E and b-the convergence in L-loc(1) (R-d), L-1(R-d), respectively, for some t(n) -> infinity of the solution u(t(n)) to an equilibrium state of the equation for a large set of nonnegative initial data in L-1. These results are new in the literature on nonlinear Fokker-Planck equations arising in the mean field theory and are also relevant to the theory of stochastic differential equations. As a matter of fact, by the above convergence result, it follows that the solution to the McKean-Vlasov stochastic differential equation corresponding to (1), which is a nonlinear distorted Brownian motion, has this equilibrium state as its unique invariant measure.
引用
收藏
页码:89 / 131
页数:43
相关论文
共 50 条
  • [1] Stabilization of Solutions of the Nonlinear Fokker-Planck Equation
    Kon'kov A.A.
    [J]. Journal of Mathematical Sciences, 2014, 197 (3) : 358 - 366
  • [2] Global solutions to a nonlinear Fokker-Planck equation
    Zhang, Xingang
    Liu, Zhe
    Ding, Ling
    Tang, Bo
    [J]. AIMS MATHEMATICS, 2023, 8 (07): : 16115 - 16126
  • [3] REGULARITY OF WEAK SOLUTIONS OF THE NONLINEAR FOKKER-PLANCK EQUATION
    Tassa, Tamir
    [J]. MATHEMATICAL RESEARCH LETTERS, 1996, 3 (04) : 475 - 490
  • [4] Exact solutions for a generalized nonlinear fractional Fokker-Planck equation
    Ma, Junhai
    Liu, Yanqin
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (01) : 515 - 521
  • [5] Anomalous diffusion, nonlinear fractional Fokker-Planck equation and solutions
    Lenzi, EK
    Malacarne, LC
    Mendes, RS
    Pedron, IT
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 319 : 245 - 252
  • [6] SOLUTIONS OF FOKKER-PLANCK EQUATION WITH APPLICATIONS IN NONLINEAR RANDOM VIBRATION
    LIU, SC
    [J]. BELL SYSTEM TECHNICAL JOURNAL, 1969, 48 (06): : 2031 - +
  • [7] EXPLICIT SOLUTIONS OF THE FOKKER-PLANCK EQUATION
    ENGLEFIELD, MJ
    [J]. DIFFERENTIAL EQUATIONS //: PROCEEDINGS OF THE EQUADIFF CONFERENCE, 1989, 118 : 223 - 230
  • [8] FACTORIZATION OF THE SOLUTIONS OF THE FOKKER-PLANCK EQUATION
    Massou, S.
    Tchoffo, M.
    Moussiliou, S.
    Essoun, A.
    Beilinson, A. A.
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2012, 10 (02): : 161 - 170
  • [9] Trends to equilibrium for a nonlocal Fokker-Planck equation
    Auricchio, Ferdinando
    Toscani, Giuseppe
    Zanella, Mattia
    [J]. APPLIED MATHEMATICS LETTERS, 2023, 145
  • [10] FOKKER-PLANCK EQUATION IN THE ABSENCE OF DETAILED EQUILIBRIUM
    BELINICHER, VI
    STURMAN, BI
    [J]. ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1979, 77 (06): : 2431 - 2434