Structured parameter optimization method for the radial basis function-based state-dependent autoregressive model

被引:9
|
作者
Peng, H
Ozaki, T
Haggan-Ozaki, V
Toyoda, Y
机构
[1] Cent S Univ, Coll Informat Sci & Engn, Changsha 410083, Peoples R China
[2] Inst Stat Math, Minato Ku, Tokyo 1068569, Japan
[3] Sophia Univ, Tokyo 1020081, Japan
[4] Niihama Natl Coll Technol, Niihama, Ehime 7920805, Japan
关键词
D O I
10.1080/0020772021000059753
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An off-line structured nonlinear parameter optimization method (SNPOM) for accelerating the computational convergence of parameter estimation of the radial basis function-based state-dependent autoregressive (RBF-AR) model is proposed. Using the method, all the parameters of the RBF-AR model may be optimized automatically and simultaneously. The proposed method combines the advantages of the Levenberg-Marquardt algorithm in nonlinear parameter optimization and the least-squares method in linear parameter estimation. Case studies on two complex time series and a nonlinear chemical reaction process show that the proposed parameter optimization method exhibits significantly accelerated convergence when compared with the classic version of the Levenberg-Marquardt algorithm, and to some hybrid algorithms such as the evolutionary programming algorithm.
引用
收藏
页码:1087 / 1098
页数:12
相关论文
共 50 条
  • [1] Recursive methods for estimating the radial basis function-based state-dependent autoregressive model
    Zhou, Yihong
    Ding, Feng
    Ji, Yan
    Hayat, Tasawar
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (06) : 2475 - 2492
  • [2] Nonlinear time series modelling with the radial basis function-based state-dependent autoregressive model
    Shi, ZY
    Tamura, Y
    Ozaki, T
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1999, 30 (07) : 717 - 727
  • [3] Modeling Nonlinear Processes Using the Radial Basis Function-Based State-Dependent Autoregressive Models
    Zhou, Yihong
    Ding, Feng
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1600 - 1604
  • [4] Parameter identification of a nonlinear radial basis function-based state-dependent autoregressive network with autoregressive noise via the filtering technique and the multiinnovation theory
    Zhou, Yihong
    Ma, Fengying
    Ding, Feng
    Xu, Ling
    Alsaedi, Ahmed
    Hayat, Tasawar
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (17) : 7619 - 7634
  • [5] Sequential Radial Basis Function-Based Optimization Method Using Virtual Sample Generation
    Tang, Yifan
    Long, Teng
    Shi, Renhe
    Wu, Yufei
    Wang, G. Gary
    JOURNAL OF MECHANICAL DESIGN, 2020, 142 (11)
  • [6] A new estimation method for radial basis function-based models
    Peng, H
    Ozaki, T
    Toyoda, Y
    NEW TECHNOLOGIES FOR COMPUTER CONTROL 2001, 2002, : 565 - 570
  • [7] A parameter optimization method for radial basis function type models
    Peng, H
    Ozaki, T
    Haggan-Ozaki, V
    Toyoda, Y
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (02): : 432 - 438
  • [8] An optimization method based on radial basis function
    Ishikawa, T
    Matsunami, M
    IEEE TRANSACTIONS ON MAGNETICS, 1997, 33 (02) : 1868 - 1871
  • [9] Nonlinear system identification using radial basis function-based signal-dependent ARX model
    Peng, H
    Ozaki, T
    Toyoda, Y
    Oda, K
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 675 - 680
  • [10] ESTIMATION OF A STATE-DEPENDENT MODEL PARAMETER
    CHUNG, YS
    CHUNG, CB
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 1995, 12 (03) : 372 - 377