Parameter identification of a nonlinear radial basis function-based state-dependent autoregressive network with autoregressive noise via the filtering technique and the multiinnovation theory

被引:2
|
作者
Zhou, Yihong [1 ]
Ma, Fengying [2 ]
Ding, Feng [1 ]
Xu, Ling [1 ]
Alsaedi, Ahmed [3 ]
Hayat, Tasawar [3 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Key Lab Adv Proc Control Light Ind, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, Sch Elect Engn & Automat, Jinan, Peoples R China
[3] King Abdulaziz Univ, Dept Math, Jeddah, Saudi Arabia
基金
中国国家自然科学基金;
关键词
filtering technique; nonlinear model; parameter estimation; RBF-ARAR model; OPTIMAL DIVIDEND PROBLEM; DISTURBANCE REJECTION; FAULT-DIAGNOSIS; MODEL; SYSTEMS; OPTIMIZATION; ALGORITHM; STRATEGY;
D O I
10.1002/rnc.5200
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article studies the parameter estimation problems of radial basis function-based state-dependent autoregressive models with autoregressive noises (RBF-ARAR models). To reduce the effect of the colored noise to parameter estimation, the data filtering technique is applied and a filtering based generalized stochastic gradient algorithm is derived for the RBF-ARAR models. In order to achieve more accurate parameter estimates, a filtering based multiinnovation generalized stochastic gradient (F-MI-GSG) algorithm is proposed by utilizing the current and past innovations. Introducing two forgetting factors, a filtering based multiinnovation generalized forgetting gradient algorithm is developed to improve the transient performance of the F-MI-GSG algorithm. The effectiveness of the proposed algorithms is verified through the simulation examples.
引用
收藏
页码:7619 / 7634
页数:16
相关论文
共 6 条
  • [1] Structured parameter optimization method for the radial basis function-based state-dependent autoregressive model
    Peng, H
    Ozaki, T
    Haggan-Ozaki, V
    Toyoda, Y
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2002, 33 (13) : 1087 - 1098
  • [2] Nonlinear time series modelling with the radial basis function-based state-dependent autoregressive model
    Shi, ZY
    Tamura, Y
    Ozaki, T
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1999, 30 (07) : 717 - 727
  • [3] Modeling Nonlinear Processes Using the Radial Basis Function-Based State-Dependent Autoregressive Models
    Zhou, Yihong
    Ding, Feng
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1600 - 1604
  • [4] Recursive methods for estimating the radial basis function-based state-dependent autoregressive model
    Zhou, Yihong
    Ding, Feng
    Ji, Yan
    Hayat, Tasawar
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (06) : 2475 - 2492
  • [5] Stability analysis of RBF network-based state-dependent autoregressive model for nonlinear time series
    Gan, Min
    Peng, Hui
    APPLIED SOFT COMPUTING, 2012, 12 (01) : 174 - 181
  • [6] Nonlinear system identification using radial basis function-based signal-dependent ARX model
    Peng, H
    Ozaki, T
    Toyoda, Y
    Oda, K
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 675 - 680