Structured parameter optimization method for the radial basis function-based state-dependent autoregressive model

被引:9
|
作者
Peng, H
Ozaki, T
Haggan-Ozaki, V
Toyoda, Y
机构
[1] Cent S Univ, Coll Informat Sci & Engn, Changsha 410083, Peoples R China
[2] Inst Stat Math, Minato Ku, Tokyo 1068569, Japan
[3] Sophia Univ, Tokyo 1020081, Japan
[4] Niihama Natl Coll Technol, Niihama, Ehime 7920805, Japan
关键词
D O I
10.1080/0020772021000059753
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An off-line structured nonlinear parameter optimization method (SNPOM) for accelerating the computational convergence of parameter estimation of the radial basis function-based state-dependent autoregressive (RBF-AR) model is proposed. Using the method, all the parameters of the RBF-AR model may be optimized automatically and simultaneously. The proposed method combines the advantages of the Levenberg-Marquardt algorithm in nonlinear parameter optimization and the least-squares method in linear parameter estimation. Case studies on two complex time series and a nonlinear chemical reaction process show that the proposed parameter optimization method exhibits significantly accelerated convergence when compared with the classic version of the Levenberg-Marquardt algorithm, and to some hybrid algorithms such as the evolutionary programming algorithm.
引用
收藏
页码:1087 / 1098
页数:12
相关论文
共 50 条
  • [11] A parallel multiselection greedy method for the radial basis function-based mesh deformation
    Li, Chao
    Xu, Xinhai
    Wang, Jinyu
    Xu, Liyang
    Ye, Shuai
    Yang, Xuejun
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 113 (10) : 1561 - 1588
  • [12] A NONLINEAR AUTOREGRESSIVE SIGNAL MODEL WITH STATE-DEPENDENT GAIN
    VESIN, JM
    SIGNAL PROCESSING, 1992, 26 (01) : 37 - 48
  • [14] Radial basis function-based shape optimization of centrifugal impeller using sequential sampling
    Khalfallah, Smail
    Ghenaiet, Adel
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2015, 229 (04) : 648 - 665
  • [15] Radial basis function-based Pareto optimization of an outer rotor brushless DC motor
    Rahmani, Omid
    Sadrossadat, Sayed Alireza
    Noohi, Mostafa
    Mirvakili, Ali
    Shams, Maitham
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2024, 37 (02)
  • [16] Compactly Supported Radial Basis Function-Based Meshless Method for Photon Propagation Model of Fluorescence Molecular Tomography
    An, Yu
    Liu, Jie
    Zhang, Guanglei
    Jiang, Shixin
    Ye, Jinzuo
    Chi, Chongwei
    Tian, Jie
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (02) : 366 - 373
  • [17] Computational optical distortion correction using a radial basis function-based mapping method
    Bauer, Aaron
    Vo, Sophie
    Parkins, Keith
    Rodriguez, Francisco
    Cakmakci, Ozan
    Rolland, Jannick P.
    OPTICS EXPRESS, 2012, 20 (14): : 14906 - 14920
  • [18] Application of local radial basis function-based differential quadrature method in micro flows
    Xu, D
    Ding, H
    Shu, C
    NSTI NANOTECH 2004, VOL 1, TECHNICAL PROCEEDINGS, 2004, : 243 - 246
  • [19] Filtered identification method for radial basis function-based nonlinear models with colored noises
    Zhou, Yi-Hong
    Zhang, Xiao
    Ding, Feng
    Kongzhi yu Juece/Control and Decision, 2024, 39 (10): : 3305 - 3312
  • [20] A Radial Basis Function-Based Graph Attention Network With Squeeze Loss Optimization for Link Prediction
    Chen J.
    Fang C.
    Zhang X.
    Wu J.
    Guo R.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (02): : 724 - 736