Structured parameter optimization method for the radial basis function-based state-dependent autoregressive model

被引:9
|
作者
Peng, H
Ozaki, T
Haggan-Ozaki, V
Toyoda, Y
机构
[1] Cent S Univ, Coll Informat Sci & Engn, Changsha 410083, Peoples R China
[2] Inst Stat Math, Minato Ku, Tokyo 1068569, Japan
[3] Sophia Univ, Tokyo 1020081, Japan
[4] Niihama Natl Coll Technol, Niihama, Ehime 7920805, Japan
关键词
D O I
10.1080/0020772021000059753
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An off-line structured nonlinear parameter optimization method (SNPOM) for accelerating the computational convergence of parameter estimation of the radial basis function-based state-dependent autoregressive (RBF-AR) model is proposed. Using the method, all the parameters of the RBF-AR model may be optimized automatically and simultaneously. The proposed method combines the advantages of the Levenberg-Marquardt algorithm in nonlinear parameter optimization and the least-squares method in linear parameter estimation. Case studies on two complex time series and a nonlinear chemical reaction process show that the proposed parameter optimization method exhibits significantly accelerated convergence when compared with the classic version of the Levenberg-Marquardt algorithm, and to some hybrid algorithms such as the evolutionary programming algorithm.
引用
收藏
页码:1087 / 1098
页数:12
相关论文
共 50 条