Characterization of CRISPR-Cas systems in Bifidobacterium breve

被引:1
|
作者
Han, Xiao [1 ,2 ]
Zhou, Xingya [1 ,2 ]
Pei, Zhangming [1 ,2 ]
Stanton, Catherine [3 ,4 ,5 ]
Ross, R. Paul [3 ,4 ]
Zhao, Jianxin [1 ,2 ,6 ]
Zhang, Hao [1 ,2 ,6 ,7 ,8 ]
Yang, Bo [1 ,2 ,3 ]
Chen, Wei [1 ,2 ,6 ]
机构
[1] Jiangnan Univ, State Key Lab Food Sci & Technol, Wuxi, Jiangsu, Peoples R China
[2] Jiangnan Univ, Sch Food Sci & Technol, Wuxi, Jiangsu, Peoples R China
[3] Jiangnan Univ, Int Joint Res Lab Pharmabiot & Antibiot Resistanc, Wuxi, Jiangsu, Peoples R China
[4] Univ Coll Cork, APC Microbiome Ireland, Cork, Ireland
[5] Teagasc Food Res Ctr, Moorepk, Cork, Ireland
[6] Jiangnan Univ, Natl Engn Res Ctr Funct Food, Wuxi, Jiangsu, Peoples R China
[7] Wuxi Translat Med Res Ctr, Wuxi, Jiangsu, Peoples R China
[8] Jiangsu Translat Med Res Inst, Wuxi Branch, Wuxi, Jiangsu, Peoples R China
来源
MICROBIAL GENOMICS | 2022年 / 8卷 / 04期
基金
中国国家自然科学基金;
关键词
Bifidobacterium breve; CRISPR-Cas system; genotyping; prophage; SPACER ACQUISITION; DOUBLE-BLIND; SUPPLEMENTATION; CLASSIFICATION; CHILDREN; BACTERIA; INFANTS; VERSION; GENOME; GUT;
D O I
10.1099/mgen.0.000812
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein (Cas) system is an important adaptive immune system for bacteria to resist foreign DNA infection, which has been widely used in genotyping and gene editing. To provide a theoretical basis for the application of the CRISPR-Cas system in Bifidobacterium breve, the occurrence and diversity of CRISPR-Cas systems were analysed in 150 B. breve strains. Specifically, 47% (71/150) of B. breve genomes possessed the CRISPR-Cas system, and type I-C CRISPR-Cas system was the most widely distributed among those strains. The spacer sequences present in B. breve can be used as a genotyping marker. Additionally, the phage assembly-related proteins were important targets of the type I-C CRISPR-Cas system in B. breve, and the protospacer adjacent motif sequences were further characterized in B. breve type I-C system as 5'-TTC-3'. All these results might provide a molecular basis for the development of endogenous genome editing tools in B. breve.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Activity and repurposing of native CRISPR-CAS systems
    Barrangou, R.
    PHYTOPATHOLOGY, 2016, 106 (12) : 176 - 176
  • [32] The Reverse Transcriptases Associated with CRISPR-Cas Systems
    Toro, Nicolas
    Martinez-Abarca, Francisco
    Gonzalez-Delgado, Alejandro
    SCIENTIFIC REPORTS, 2017, 7
  • [33] Regulation of CRISPR-Cas adaptive immune systems
    Patterson, Adrian G.
    Yevstigneyeva, Mariya S.
    Fineran, Peter C.
    CURRENT OPINION IN MICROBIOLOGY, 2017, 37 : 1 - 7
  • [34] CRISPR-Cas systems: beyond adaptive immunity
    Westra, Edze R.
    Buckling, Angus
    Fineran, Peter C.
    NATURE REVIEWS MICROBIOLOGY, 2014, 12 (05) : 317 - 326
  • [35] Gene regulation by engineered CRISPR-Cas systems
    Fineran, Peter C.
    Dy, Ron L.
    CURRENT OPINION IN MICROBIOLOGY, 2014, 18 : 83 - 89
  • [36] CRISPR-Cas Systems: Prospects for Use in Medicine
    Zaychikova, Marina V.
    Danilenko, Valery N.
    Maslov, Dmitry A.
    APPLIED SCIENCES-BASEL, 2020, 10 (24): : 1 - 19
  • [37] CRISPR-Cas systems and applications for crop bioengineering
    Uranga, Mireia
    Martin-Hernandez, Ana Montserrat
    De Storme, Nico
    Pasin, Fabio
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2024, 12
  • [38] A use/disuse paradigm for CRISPR-Cas systems
    Sophie Juliane Veigl
    Biology & Philosophy, 2019, 34
  • [40] CRISPR-Cas systems for diagnosing infectious diseases
    Kostyusheva, Anastasiya
    Brezgin, Sergey
    Babin, Yurii
    Vasilyeva, Irina
    Glebe, Dieter
    Kostyushev, Dmitry
    Chulanov, Vladimir
    METHODS, 2022, 203 : 431 - 446