IMPROVED HARDY AND RELLICH TYPE INEQUALITIES WITH TWO WEIGHT FUNCTIONS

被引:1
|
作者
Ahmetolan, Semra [1 ]
Kombe, Ismail [2 ]
机构
[1] Istanbul Tech Univ, Fac Arts & Sci, Dept Math Engn, Istanbul, Turkey
[2] Istanbul Commerce Univ, Fac Engn, Dept Elect & Elect Engn, Istanbul, Turkey
来源
关键词
Improved Hardy inequality with two weight functions; improved Rellich in-equality with two weight functions; UNCERTAINTY PRINCIPLE; FUNDAMENTAL SOLUTION; CONSTANTS; POINCARE;
D O I
10.7153/mia-2018-21-60
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we obtain several improved versions of two weight Hardy and Rellich type inequalities on the sub-Riemannian manifold R2n+1 defined by the vector fields X-j = partial derivative/partial derivative x(j) + 2ky(j)vertical bar z vertical bar(2k-2)partial derivative/partial derivative l, Y-j = partial derivative/partial derivative y(j) - 2kx(j)vertical bar z vertical bar(2k-2)partial derivative/partial derivative l, j = 1, 2, ..., n where (z, l) = (x, y,l) is an element of R2n+1, vertical bar z vertical bar = (vertical bar x vertical bar(2) + vertical bar y vertical bar(2))(1/2) and k >= 1.
引用
收藏
页码:885 / 896
页数:12
相关论文
共 50 条
  • [31] On Birman's sequence of Hardy-Rellich-type inequalities
    Gesztesy, Fritz
    Littlejohn, Lance L.
    Micheal, Isaac
    Wellman, Richard
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (04) : 2761 - 2801
  • [32] From Hardy to Rellich inequalities on graphs
    Keller, Matthias
    Pinchover, Yehuda
    Pogorzelski, Felix
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2021, 122 (03) : 458 - 477
  • [33] WEIGHTED MULTILINEAR HARDY AND RELLICH INEQUALITIES
    Edmunds, David E.
    Meskhi, Alexander
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2020, 174 (03) : 395 - 398
  • [34] Hardy and Rellich Inequalities with Bessel Pairs
    Ruzhansky, Michael
    Sabitbek, Bolys
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2025,
  • [35] On the generalized Hardy-Rellich inequalities
    Anoop, T., V
    Das, Ujjal
    Sarkar, Abhishek
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (02) : 897 - 919
  • [36] Bessel pairs and optimal Hardy and Hardy–Rellich inequalities
    Nassif Ghoussoub
    Amir Moradifam
    Mathematische Annalen, 2011, 349 : 1 - 57
  • [37] Hardy inequalities, Rellich inequalities and local Dirichlet forms
    Derek W. Robinson
    Journal of Evolution Equations, 2018, 18 : 1521 - 1541
  • [38] Hardy and Rellich-Type Inequalities for Metrics Defined by Vector Fields
    Gabriele Grillo
    Potential Analysis, 2003, 18 : 187 - 217
  • [39] Hardy inequalities, Rellich inequalities and local Dirichlet forms
    Robinson, Derek W.
    JOURNAL OF EVOLUTION EQUATIONS, 2018, 18 (03) : 1521 - 1541
  • [40] Horizontal Weighted Hardy–Rellich Type Inequalities on Stratified Lie Groups
    Bolys Sabitbek
    Durvudkhan Suragan
    Complex Analysis and Operator Theory, 2018, 12 : 1469 - 1480