Bessel pairs and optimal Hardy and Hardy–Rellich inequalities

被引:0
|
作者
Nassif Ghoussoub
Amir Moradifam
机构
[1] University of British Columbia,Department of Mathematics
来源
Mathematische Annalen | 2011年 / 349卷
关键词
Hardy Inequality; Good Constant; Bounded Smooth Domain; Integral Criterion; Bessel Potential;
D O I
暂无
中图分类号
学科分类号
摘要
We give necessary and sufficient conditions on a pair of positive radial functions V and W on a ball B of radius R in Rn, n ≥ 1, so that the following inequalities hold for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u \in C_{0}^{\infty}(B)}$$\end{document} : \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\label{one} \int\limits_{B}V(x)|\nabla u |^{2}dx \geq \int\limits_{B} W(x)u^2dx,$$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\label{two} \int\limits_{B}V(x)|\Delta u |^{2}dx \geq\int\limits_{B} W(x)|\nabla u|^{2}dx+(n-1)\int\limits_{B}\left(\frac{V(x)}{|x|^2}-\frac{V_r(|x|)}{|x|}\right)|\nabla u|^2dx.$$\end{document}This characterization makes a very useful connection between Hardy-type inequalities and the oscillatory behaviour of certain ordinary differential equations, and helps in the identification of a large number of such couples (V, W)—that we call Bessel pairs—as well as the best constants in the corresponding inequalities. This allows us to improve, extend, and unify many results—old and new—about Hardy and Hardy–Rellich type inequalities, such as those obtained by Caffarelli et al. (Compos Math 53:259–275, 1984), Brezis and Vázquez (Revista Mat. Univ. Complutense Madrid 10:443–469, 1997), Wang and Willem (J Funct Anal 203:550–568, 2003), Adimurthi et al. (Proc Am Math Soc 130:489–505, 2002), and many others.
引用
收藏
页码:1 / 57
页数:56
相关论文
共 50 条
  • [1] Bessel pairs and optimal Hardy and Hardy-Rellich inequalities
    Ghoussoub, Nassif
    Moradifam, Amir
    [J]. MATHEMATISCHE ANNALEN, 2011, 349 (01) : 1 - 57
  • [2] HARDY AND HARDY-RELLICH TYPE INEQUALITIES WITH BESSEL PAIRS
    Nguyen Lam
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 (01) : 211 - 223
  • [3] Improved Hardy and Hardy-Rellich type inequalities with Bessel pairs via factorizations
    Nguyen Tuan Duy
    Nguyen Lam
    Nguyen Anh Triet
    [J]. JOURNAL OF SPECTRAL THEORY, 2020, 10 (04) : 1277 - 1302
  • [4] Hardy–Rellich identities with Bessel pairs
    Tuan Duy Nguyen
    Nguyen Lam-Hoang
    Anh Triet Nguyen
    [J]. Archiv der Mathematik, 2019, 113 : 95 - 112
  • [5] Hardy-Rellich identities with Bessel pairs
    Tuan Duy Nguyen
    Nguyen Lam-Hoang
    Anh Triet Nguyen
    [J]. ARCHIV DER MATHEMATIK, 2019, 113 (01) : 95 - 112
  • [6] CYLINDRICAL HARDY TYPE INEQUALITIES WITH BESSEL PAIRS
    Nguyen Tuan Duy
    Le Long Phi
    [J]. OPERATORS AND MATRICES, 2021, 15 (02): : 485 - 495
  • [7] p-Bessel Pairs, Hardy’s Identities and Inequalities and Hardy–Sobolev Inequalities with Monomial Weights
    Nguyen Tuan Duy
    Nguyen Lam
    Guozhen Lu
    [J]. The Journal of Geometric Analysis, 2022, 32
  • [8] OPTIMAL Lp HARDY-RELLICH TYPE INEQUALITIES ON THE SPHERE
    Abolarinwa, Abimbola
    Rauf, Kamilu
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (01): : 307 - 315
  • [9] Hardy and Rellich type inequalities with remainders
    Ramil Nasibullin
    [J]. Czechoslovak Mathematical Journal, 2022, 72 : 87 - 110
  • [10] Hardy and Rellich Type Inequalities with Remainders
    Nasibullin, Ramil
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2022, 72 (01) : 87 - 110