Hardy–Rellich identities with Bessel pairs

被引:0
|
作者
Tuan Duy Nguyen
Nguyen Lam-Hoang
Anh Triet Nguyen
机构
[1] University of Finance-Marketing,Department of Fundamental Sciences
[2] Institute for Computational Science,Division of Computational Mathematics and Engineering
[3] Ton Duc Thang University,Faculty of Mathematics and Statistics
[4] Ton Duc Thang University,undefined
[5] Institute of Fundamental and Applied Sciences,undefined
[6] Duy Tan University,undefined
来源
Archiv der Mathematik | 2019年 / 113卷
关键词
Hardy–Rellich type inequalities; Bessel pair; Remainder term; Optimizer; 26D10; 46E35; 35A23;
D O I
暂无
中图分类号
学科分类号
摘要
We prove an identity that implies the classical Rellich inequality as well as several improved versions of Rellich type inequalities. Moreover, our equality gives a simple perception of Rellich type inequalities as well as the nonexistence of extremizers.
引用
收藏
页码:95 / 112
页数:17
相关论文
共 50 条
  • [1] Hardy-Rellich identities with Bessel pairs
    Tuan Duy Nguyen
    Nguyen Lam-Hoang
    Anh Triet Nguyen
    [J]. ARCHIV DER MATHEMATIK, 2019, 113 (01) : 95 - 112
  • [2] Bessel pairs and optimal Hardy and Hardy–Rellich inequalities
    Nassif Ghoussoub
    Amir Moradifam
    [J]. Mathematische Annalen, 2011, 349 : 1 - 57
  • [3] Hardy–Rellich and second order Poincaré identities on the hyperbolic space via Bessel pairs
    Elvise Berchio
    Debdip Ganguly
    Prasun Roychowdhury
    [J]. Calculus of Variations and Partial Differential Equations, 2022, 61
  • [4] HARDY AND HARDY-RELLICH TYPE INEQUALITIES WITH BESSEL PAIRS
    Nguyen Lam
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 (01) : 211 - 223
  • [5] Bessel pairs and optimal Hardy and Hardy-Rellich inequalities
    Ghoussoub, Nassif
    Moradifam, Amir
    [J]. MATHEMATISCHE ANNALEN, 2011, 349 (01) : 1 - 57
  • [6] Hardy-Rellich and second order Poincare identities on the hyperbolic space via Bessel pairs
    Berchio, Elvise
    Ganguly, Debdip
    Roychowdhury, Prasun
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (04)
  • [7] Improved Hardy and Hardy-Rellich type inequalities with Bessel pairs via factorizations
    Nguyen Tuan Duy
    Nguyen Lam
    Nguyen Anh Triet
    [J]. JOURNAL OF SPECTRAL THEORY, 2020, 10 (04) : 1277 - 1302
  • [8] p-Bessel Pairs, Hardy’s Identities and Inequalities and Hardy–Sobolev Inequalities with Monomial Weights
    Nguyen Tuan Duy
    Nguyen Lam
    Guozhen Lu
    [J]. The Journal of Geometric Analysis, 2022, 32
  • [9] p-Bessel Pairs, Hardy's Identities and Inequalities and Hardy-Sobolev Inequalities with Monomial Weights
    Nguyen Tuan Duy
    Lam, Nguyen
    Lu, Guozhen
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (04)
  • [10] Hardy and Rellich inequalities, identities, and sharp remainders on homogeneous groups
    Ruzhansky, Michael
    Suragan, Durvudkhan
    [J]. ADVANCES IN MATHEMATICS, 2017, 317 : 799 - 822