Hardy-Rellich and second order Poincare identities on the hyperbolic space via Bessel pairs

被引:7
|
作者
Berchio, Elvise [1 ]
Ganguly, Debdip [2 ]
Roychowdhury, Prasun [3 ]
机构
[1] Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[2] Hauz Khas, Dept Math, Indian Inst Technol Delhi, IIT Campus, Delhi 110016, India
[3] Indian Inst Sci Educ & Res, Dept Math, Dr Homi Bhabha Rd, Pune 411008, Maharashtra, India
关键词
26D10; 46E35; 31C12; 35A23; RIEMANNIAN-MANIFOLDS; INEQUALITIES;
D O I
10.1007/s00526-022-02232-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a family of Hardy-Rellich and Poincare identities and inequalities on the hyperbolic space having, as particular cases, improved Hardy-Rellich, Rellich and second order Poincare inequalities. All remainder terms provided improve those already known in literature, and all identities hold with same constants for radial operators also. Furthermore, as applications of the main results, second order versions of the uncertainty principle on the hyperbolic space are derived.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Hardy–Rellich and second order Poincaré identities on the hyperbolic space via Bessel pairs
    Elvise Berchio
    Debdip Ganguly
    Prasun Roychowdhury
    [J]. Calculus of Variations and Partial Differential Equations, 2022, 61
  • [2] Hardy-Rellich identities with Bessel pairs
    Tuan Duy Nguyen
    Nguyen Lam-Hoang
    Anh Triet Nguyen
    [J]. ARCHIV DER MATHEMATIK, 2019, 113 (01) : 95 - 112
  • [3] HARDY AND HARDY-RELLICH TYPE INEQUALITIES WITH BESSEL PAIRS
    Nguyen Lam
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 (01) : 211 - 223
  • [4] Bessel pairs and optimal Hardy and Hardy-Rellich inequalities
    Ghoussoub, Nassif
    Moradifam, Amir
    [J]. MATHEMATISCHE ANNALEN, 2011, 349 (01) : 1 - 57
  • [5] Improved Hardy and Hardy-Rellich type inequalities with Bessel pairs via factorizations
    Nguyen Tuan Duy
    Nguyen Lam
    Nguyen Anh Triet
    [J]. JOURNAL OF SPECTRAL THEORY, 2020, 10 (04) : 1277 - 1302
  • [6] Hardy–Rellich identities with Bessel pairs
    Tuan Duy Nguyen
    Nguyen Lam-Hoang
    Anh Triet Nguyen
    [J]. Archiv der Mathematik, 2019, 113 : 95 - 112
  • [7] Sharp Poincare Hardy and Poincare Rellich inequalities on the hyperbolic space
    Berchio, Elvise
    Ganguly, Debdip
    Grillo, Gabriele
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (04) : 1661 - 1703
  • [8] Hardy-Rellich inequalities in domains of the Euclidean space
    Avkhadiev, F. G.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 442 (02) : 469 - 484
  • [9] Bessel pairs and optimal Hardy and Hardy–Rellich inequalities
    Nassif Ghoussoub
    Amir Moradifam
    [J]. Mathematische Annalen, 2011, 349 : 1 - 57
  • [10] Fractional Hardy-Rellich inequalities via integration by parts
    De Nitti, Nicola
    Djitte, Sidy Moctar
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 243