IMPROVED HARDY AND RELLICH TYPE INEQUALITIES WITH TWO WEIGHT FUNCTIONS

被引:1
|
作者
Ahmetolan, Semra [1 ]
Kombe, Ismail [2 ]
机构
[1] Istanbul Tech Univ, Fac Arts & Sci, Dept Math Engn, Istanbul, Turkey
[2] Istanbul Commerce Univ, Fac Engn, Dept Elect & Elect Engn, Istanbul, Turkey
来源
关键词
Improved Hardy inequality with two weight functions; improved Rellich in-equality with two weight functions; UNCERTAINTY PRINCIPLE; FUNDAMENTAL SOLUTION; CONSTANTS; POINCARE;
D O I
10.7153/mia-2018-21-60
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we obtain several improved versions of two weight Hardy and Rellich type inequalities on the sub-Riemannian manifold R2n+1 defined by the vector fields X-j = partial derivative/partial derivative x(j) + 2ky(j)vertical bar z vertical bar(2k-2)partial derivative/partial derivative l, Y-j = partial derivative/partial derivative y(j) - 2kx(j)vertical bar z vertical bar(2k-2)partial derivative/partial derivative l, j = 1, 2, ..., n where (z, l) = (x, y,l) is an element of R2n+1, vertical bar z vertical bar = (vertical bar x vertical bar(2) + vertical bar y vertical bar(2))(1/2) and k >= 1.
引用
收藏
页码:885 / 896
页数:12
相关论文
共 50 条
  • [41] Weighted anisotropic Hardy and Rellich type inequalities for general vector fields
    Ruzhansky, Michael
    Sabitbek, Bolys
    Suragan, Durvudkhan
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2019, 26 (02):
  • [42] Best constants in the Hardy-Rellich type inequalities on the Heisenberg group
    Yang Qiaohua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (01) : 423 - 431
  • [43] Weighted anisotropic Hardy and Rellich type inequalities for general vector fields
    Michael Ruzhansky
    Bolys Sabitbek
    Durvudkhan Suragan
    Nonlinear Differential Equations and Applications NoDEA, 2019, 26
  • [44] Hardy and Rellich-type inequalities for metrics defined by vector fields
    Grillo, G
    POTENTIAL ANALYSIS, 2003, 18 (03) : 187 - 217
  • [45] Improved Lp-Hardy and Lp-Rellich Inequalities with Magnetic Fields
    Lam, Nguyen
    Lu, Guozhen
    VIETNAM JOURNAL OF MATHEMATICS, 2023, 51 (04) : 971 - 984
  • [46] Sharp constants in the Hardy-Rellich inequalities
    Yafaev, D
    JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 168 (01) : 121 - 144
  • [47] Bessel pairs and optimal Hardy and Hardy-Rellich inequalities
    Ghoussoub, Nassif
    Moradifam, Amir
    MATHEMATISCHE ANNALEN, 2011, 349 (01) : 1 - 57
  • [48] HARDY AND RELLICH INEQUALITIES ON THE COMPLEMENT OF CONVEX SETS
    Robinson, Derek W.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 108 (01) : 98 - 119
  • [49] Hardy and Rellich inequalities for submanifolds in Hadamard spaces
    Batista, M.
    Mirandola, H.
    Vitorio, F.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (09) : 5813 - 5829
  • [50] Inequalities of Rellich Type
    Edmunds, D. E.
    Evans, W. D.
    Lewis, R. T.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2021, 55 (02) : 130 - 139