A Jacobi-Davidson type method for a right definite two-parameter eigenvalue problem

被引:21
|
作者
Hochstenbach, ME
Plestenjak, B
机构
[1] Univ Utrecht, Inst Math, NL-3508 TA Utrecht, Netherlands
[2] Univ Ljubljana, IMFM, TCS, SI-1000 Ljubljana, Slovenia
关键词
right definite two-parameter eigenvalue problem; subspace method; Jacobi-Davidson method; correction equation; Ritz pair; inexact Newton method;
D O I
10.1137/S0895479801395264
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new numerical iterative method for computing selected eigenpairs of a right definite two-parameter eigenvalue problem. The method works even without good initial approximations and is able to tackle large problems that are too expensive for existing methods. The new method is similar to the Jacobi-Davidson method for the eigenvalue problem. In each step, we first compute Ritz pairs of a small projected right definite two-parameter eigenvalue problem and then expand the search spaces using approximate solutions of appropriate correction equations. We present two alternatives for the correction equations, introduce a selection technique that makes it possible to compute more than one eigenpair, and give some numerical results.
引用
收藏
页码:392 / 410
页数:19
相关论文
共 50 条