A Jacobi-Davidson type method for computing real eigenvalues of the quadratic eigenvalue problem

被引:0
|
作者
Li, Hao [1 ,2 ]
Cai, Yunfeng [1 ,2 ]
机构
[1] Peking Univ, LMAM, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Quadratic eigenvalue problem; Jacobi-Davidson method; Real eigenvalue; ITERATION METHOD; ALGORITHM;
D O I
10.1007/s10092-015-0171-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a new Jacobi-Davidson type method to compute several real eigenvalues of the Hermitian quadratic eigenvalue problem. This method uses a simple index to sort the eigenvalues of the projected quadratic eigenvalue problem and extracts the approximate eigenvectors for the quadratic eigenvalue problem with the eigenvectors of the projected quadratic eigenvalue problem corresponding to the eigenvalues with the smallest indices. Numerical examples show that our method is effective and efficient to compute real eigenvalues of the Hermitian quadratic eigenvalue problem.
引用
收藏
页码:737 / 749
页数:13
相关论文
共 50 条