A Jacobi-Davidson type SVD method

被引:49
|
作者
Hochstenbach, ME [1 ]
机构
[1] Univ Utrecht, Inst Math, NL-3508 TA Utrecht, Netherlands
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2001年 / 23卷 / 02期
关键词
Jacobi-Davidson; singular value decomposition ( SVD); singular values; singular vectors; norm; augmented matrix; correction equation; (inexact) accelerated Newton; improving singular values;
D O I
10.1137/S1064827500372973
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss a new method for the iterative computation of a portion of the singular values and vectors of a large sparse matrix. Similar to the Jacobi Davidson method for the eigenvalue problem, we compute in each step a correction by (approximately) solving a correction equation. We give a few variants of this Jacobi Davidson SVD (JDSVD) method with their theoretical properties. It is shown that the JDSVD can be seen as an accelerated (inexact) Newton scheme. We experimentally compare the method with some other iterative SVD methods.
引用
收藏
页码:606 / 628
页数:23
相关论文
共 50 条
  • [1] ON INNER ITERATIONS OF JACOBI-DAVIDSON TYPE METHODS FOR LARGE SVD COMPUTATIONS
    Huang, Jinzhi
    Jia, Zhongxiao
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (03): : A1574 - A1603
  • [2] A Jacobi-Davidson type method for the product eigenvalue problem
    Hochstenbach, Michiel E.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 212 (01) : 46 - 62
  • [3] A Jacobi-Davidson type method for the generalized singular value problem
    Hochstenbach, M. E.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (3-4) : 471 - 487
  • [4] On the correction equation of the Jacobi-Davidson method
    Wu, Gang
    Pang, Hong-Kui
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 522 : 51 - 70
  • [5] A Jacobi-Davidson method for nonlinear eigenproblems
    Voss, H
    [J]. COMPUTATIONAL SCIENCE - ICCS 2004, PT 2, PROCEEDINGS, 2004, 3037 : 34 - 41
  • [6] Polynomial optimization and a Jacobi-Davidson type method for commuting matrices
    Bleylevens, Ivo W. M.
    Hochstenbach, Michiel E.
    Peeters, Ralf L. M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 224 : 564 - 580
  • [7] HOMOGENEOUS JACOBI-DAVIDSON
    Hochstenbach, Michiel E.
    Notay, Yvan
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2007, 29 : 19 - 30
  • [8] Is Jacobi-Davidson faster than Davidson?
    Notay, Y
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2004, 26 (02) : 522 - 543
  • [9] Behavior of the Correction Equations in the Jacobi-Davidson Method
    Kong, Yuan
    Fang, Yong
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [10] CONTROLLING INNER ITERATIONS IN THE JACOBI-DAVIDSON METHOD
    Hochstenbach, Michiel E.
    Notay, Yvan
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (02) : 460 - 477