Behavior of the Correction Equations in the Jacobi-Davidson Method

被引:4
|
作者
Kong, Yuan [1 ]
Fang, Yong [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
LOCAL QUADRATIC CONVERGENCE; EIGENPAIRS; ITERATION;
D O I
10.1155/2019/5169362
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Jacobi-Davidson iteration method is efficient for computing several eigenpairs of Hermitian matrices. Although the involved correction equation in the Jacobi-Davidson method has many developed variants, the behaviors of them are not clear for us. In this paper, we aim to explore, theoretically, the convergence property of the Jacobi-Davidson method influenced by different types of correction equations. As a by-product, we derive the optimal expansion vector, which imposed a shift-and-invert transform on a vector located in the prescribed subspace, to expand the current subspace.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Alternative correction equations in the Jacobi-Davidson method
    Genseberger, M
    Sleijpen, GLG
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 1999, 6 (03) : 235 - 253
  • [2] On the correction equation of the Jacobi-Davidson method
    Wu, Gang
    Pang, Hong-Kui
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 522 : 51 - 70
  • [3] A refined Jacobi-Davidson method and its correction equation
    Feng, SQ
    Jia, ZX
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (2-3) : 417 - 427
  • [4] A modification of the Jacobi-Davidson method ∗
    Ravibabu, Mashetti
    [J]. arXiv, 2019,
  • [5] A case for a biorthogonal Jacobi-Davidson method: Restarting and correction equation
    Stathopoulos, A
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2002, 24 (01) : 238 - 259
  • [6] A Jacobi-Davidson type SVD method
    Hochstenbach, ME
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (02): : 606 - 628
  • [7] A Jacobi-Davidson method for nonlinear eigenproblems
    Voss, H
    [J]. COMPUTATIONAL SCIENCE - ICCS 2004, PT 2, PROCEEDINGS, 2004, 3037 : 34 - 41
  • [8] A Jacobi-Davidson type method with a correction equation tailored for integral operators
    Vasconcelos, Paulo B.
    d'Almeida, Filomena D.
    Roman, Jose E.
    [J]. NUMERICAL ALGORITHMS, 2013, 64 (01) : 85 - 103
  • [9] HOMOGENEOUS JACOBI-DAVIDSON
    Hochstenbach, Michiel E.
    Notay, Yvan
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2007, 29 : 19 - 30
  • [10] Homogeneous Jacobi-Davidson
    Service de Métrologie Nucléaire, Université Libre de Bruxelles , 50 Av. ED. Roosevelt, B-1050 Brussels, Belgium
    [J]. Electron. Trans. Numer. Anal., 2007, (19-30):