Alternative correction equations in the Jacobi-Davidson method

被引:0
|
作者
Genseberger, M
Sleijpen, GLG
机构
[1] Univ Utrecht, Inst Math, NL-3508 TA Utrecht, Netherlands
[2] CWI, NL-1009 AB Amsterdam, Netherlands
关键词
eigenvalues and eigenvectors; Jacobi-Davidson method;
D O I
10.1002/(SICI)1099-1506(199904/05)6:3<235::AID-NLA166>3.0.CO;2-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The correction equation in the Jacobi-Davidson method is effective in a subspace orthogonal to the current eigenvector approximation, whereas for the continuation of the process only vectors orthogonal to the search subspace are of importance. Such a Vector is obtained by orthogonalizing the (approximate) solution of the correction equation against the search subspace. As an alternative, a variant of the correction equation can be formulated that is restricted to the subspace orthogonal to the current search subspace. In this paper, we discuss the effectiveness of this variant. Our investigation is also motivated by the fact that the restricted correction equation can be used for avoiding stagnation in the case of defective eigenvalues. Moreover, this equation plays a key role in the inexact TRQ method [18]. Copyright (C) 1999 John Wiley & Sons, Ltd.
引用
收藏
页码:235 / 253
页数:19
相关论文
共 50 条
  • [1] Behavior of the Correction Equations in the Jacobi-Davidson Method
    Kong, Yuan
    Fang, Yong
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [2] On the correction equation of the Jacobi-Davidson method
    Wu, Gang
    Pang, Hong-Kui
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 522 : 51 - 70
  • [3] A refined Jacobi-Davidson method and its correction equation
    Feng, SQ
    Jia, ZX
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (2-3) : 417 - 427
  • [4] A modification of the Jacobi-Davidson method ∗
    Ravibabu, Mashetti
    [J]. arXiv, 2019,
  • [5] A case for a biorthogonal Jacobi-Davidson method: Restarting and correction equation
    Stathopoulos, A
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2002, 24 (01) : 238 - 259
  • [6] A Jacobi-Davidson type SVD method
    Hochstenbach, ME
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (02): : 606 - 628
  • [7] A Jacobi-Davidson method for nonlinear eigenproblems
    Voss, H
    [J]. COMPUTATIONAL SCIENCE - ICCS 2004, PT 2, PROCEEDINGS, 2004, 3037 : 34 - 41
  • [8] A Jacobi-Davidson type method with a correction equation tailored for integral operators
    Vasconcelos, Paulo B.
    d'Almeida, Filomena D.
    Roman, Jose E.
    [J]. NUMERICAL ALGORITHMS, 2013, 64 (01) : 85 - 103
  • [9] HOMOGENEOUS JACOBI-DAVIDSON
    Hochstenbach, Michiel E.
    Notay, Yvan
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2007, 29 : 19 - 30
  • [10] Homogeneous Jacobi-Davidson
    Service de Métrologie Nucléaire, Université Libre de Bruxelles , 50 Av. ED. Roosevelt, B-1050 Brussels, Belgium
    [J]. Electron. Trans. Numer. Anal, 2007, (19-30):