A Jacobi-Davidson type method for a right definite two-parameter eigenvalue problem

被引:21
|
作者
Hochstenbach, ME
Plestenjak, B
机构
[1] Univ Utrecht, Inst Math, NL-3508 TA Utrecht, Netherlands
[2] Univ Ljubljana, IMFM, TCS, SI-1000 Ljubljana, Slovenia
关键词
right definite two-parameter eigenvalue problem; subspace method; Jacobi-Davidson method; correction equation; Ritz pair; inexact Newton method;
D O I
10.1137/S0895479801395264
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new numerical iterative method for computing selected eigenpairs of a right definite two-parameter eigenvalue problem. The method works even without good initial approximations and is able to tackle large problems that are too expensive for existing methods. The new method is similar to the Jacobi-Davidson method for the eigenvalue problem. In each step, we first compute Ritz pairs of a small projected right definite two-parameter eigenvalue problem and then expand the search spaces using approximate solutions of appropriate correction equations. We present two alternatives for the correction equations, introduce a selection technique that makes it possible to compute more than one eigenpair, and give some numerical results.
引用
收藏
页码:392 / 410
页数:19
相关论文
共 50 条
  • [21] Jacobi-Davidson methods for generalized MHD-eigenvalue problems
    Booten, A.
    Fokkema, D.
    Sleijpen, G.
    Van der vorst, H.
    [J]. Report - Department of Numerical Mathematics, 1995, (14): : 1 - 7
  • [22] ON THE SINGULAR TWO-PARAMETER EIGENVALUE PROBLEM
    Muhic, Andrej
    Plestenjak, Bor
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2009, 18 : 420 - 437
  • [23] A Jacobi–Davidson type method for computing real eigenvalues of the quadratic eigenvalue problem
    Hao Li
    Yunfeng Cai
    [J]. Calcolo, 2016, 53 : 737 - 749
  • [24] Jacobi-Davidson methods for generalized MHD-eigenvalue problems
    Booten, A
    Fokkema, D
    Sleijpen, G
    VanderVorst, H
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 131 - 134
  • [25] Jacobi-Davidson methods for generalized MHD-eigenvalue problems
    [J]. Z Angew Math Mech ZAMM, Suppl 1 (131):
  • [26] A continuation method for a weakly elliptic two-parameter eigenvalue problem
    Plestenjak, B
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2001, 21 (01) : 199 - 216
  • [27] A MULTILEVEL JACOBI-DAVIDSON METHOD FOR POLYNOMIAL PDE EIGENVALUE PROBLEMS ARISING IN PLASMA PHYSICS
    Hochbruck, Marlis
    Loechel, Dominik
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (06): : 3151 - 3169
  • [28] Behavior of the Correction Equations in the Jacobi-Davidson Method
    Kong, Yuan
    Fang, Yong
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [29] Two-sided and alternating Jacobi-Davidson
    Hochstenbach, ME
    Sleijpen, GLG
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 358 : 145 - 172
  • [30] CONTROLLING INNER ITERATIONS IN THE JACOBI-DAVIDSON METHOD
    Hochstenbach, Michiel E.
    Notay, Yvan
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (02) : 460 - 477