CONVERGENT SEMIDEFINITE PROGRAMMING RELAXATIONS FOR GLOBAL BILEVEL POLYNOMIAL OPTIMIZATION PROBLEMS

被引:18
|
作者
Jeyakumar, V. [1 ,2 ]
Lasserre, J. B. [2 ,3 ]
Li, G. [1 ]
Pham, T. S. [4 ,5 ,6 ]
机构
[1] Univ New S Wales, Dept Appl Math, Sydney, NSW 2052, Australia
[2] LAAS CNRS, F-31400 Toulouse, France
[3] LAAS, Inst Math, F-31400 Toulouse, France
[4] Duy Tan Univ, Inst Res & Dev, K7-25, Quang Trung, Danang, Vietnam
[5] Univ Dalat, Dept Math, 1 Phu Dong Thien Vuong, Da Lat, Vietnam
[6] Univ New S Wales, Dept Appl Math, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会; 欧洲研究理事会;
关键词
bilevel programming; global optimization; polynomial optimization; semidefinite programming hierarchies; SETS; SYSTEMS;
D O I
10.1137/15M1017922
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a bilevel polynomial optimization problem where the objective and the constraint functions of both the upper-and the lower-level problems are polynomials. We present methods for finding its global minimizers and global minimum using a sequence of semidefinite programming (SDP) relaxations and provide convergence results for the methods. Our scheme for problems with a convex lower-level problem involves solving a transformed equivalent single-level problem by a sequence of SDP relaxations, whereas our approach for general problems involving a nonconvex polynomial lower-level problem solves a sequence of approximation problems via another sequence of SDP relaxations.
引用
收藏
页码:753 / 780
页数:28
相关论文
共 50 条
  • [21] Global optimization of nonlinear bilevel programming problems
    Gümüs, ZH
    Floudas, CA
    JOURNAL OF GLOBAL OPTIMIZATION, 2001, 20 (01) : 1 - 31
  • [22] On approximating complex quadratic optimization problems via semidefinite programming relaxations
    Anthony Man-Cho So
    Jiawei Zhang
    Yinyu Ye
    Mathematical Programming, 2007, 110 : 93 - 110
  • [23] On approximating complex quadratic optimization problems via semidefinite programming relaxations
    So, Anthony Man-Cho
    Zhang, Jiawei
    Ye, Yinyu
    MATHEMATICAL PROGRAMMING, 2007, 110 (01) : 93 - 110
  • [24] Semidefinite relaxations for semi-infinite polynomial programming
    Wang, Li
    Guo, Feng
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2014, 58 (01) : 133 - 159
  • [25] On approximating complex quadratic optimization problems via semidefinite programming relaxations
    So, AMC
    Zhang, JW
    Ye, YY
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2005, 3509 : 125 - 135
  • [26] Semidefinite relaxations for semi-infinite polynomial programming
    Li Wang
    Feng Guo
    Computational Optimization and Applications, 2014, 58 : 133 - 159
  • [27] Global optimization of bilevel programming problems via parametric programming
    Pistikopoulos, EN
    Dua, V
    Ryu, JH
    FRONTIERS IN GLOBAL OPTIMIZATION, 2003, 74 : 457 - 476
  • [28] SparsePOP - A sparse semidefinite programming relaxation of polynomial optimization problems
    Waki, Hayato
    Kim, Sunyoung
    Kojima, Masakazu
    Muramatsu, Masakazu
    Sugimoto, Hiroshi
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2008, 35 (02): : 1 - 13
  • [29] Decomposition-based Method for Sparse Semidefinite Relaxations of Polynomial Optimization Problems
    Kleniati, P. M.
    Parpas, P.
    Rustem, B.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 145 (02) : 289 - 310
  • [30] Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity
    Waki, Hayato
    Kim, Sunyoung
    Kojima, Masakazu
    Muramatsu, Masakazu
    SIAM JOURNAL ON OPTIMIZATION, 2006, 17 (01) : 218 - 242