Global optimization of nonlinear bilevel programming problems

被引:134
|
作者
Gümüs, ZH [1 ]
Floudas, CA [1 ]
机构
[1] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
bilevel programming; bilevel optimization; twice-continuously differentiable; global optimization; bilevel nonlinear; nonconvex; mixed integer nonlinear optimization;
D O I
10.1023/A:1011268113791
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A novel technique that addresses the solution of the general nonlinear bilevel programming problem to global optimality is presented. Global optimality is guaranteed for problems that involve twice differentiable nonlinear functions as long as the linear independence constraint qualification condition holds for the inner problem constraints. The approach is based on the relaxation of the feasible region by convex underestimation, embedded in a branch and bound framework utilizing the basic principles of the deterministic global optimization algorithm, alpha BB [2, 4, 5, 11]. Epsilon global optimality in a finite number of iterations is theoretically guaranteed. Computational studies on several literature problems are reported.
引用
收藏
页码:1 / 31
页数:31
相关论文
共 50 条
  • [1] Global Optimization of Nonlinear Bilevel Programming Problems
    Zeynep H. Gümüş
    Christodoulos A. Floudas
    [J]. Journal of Global Optimization, 2001, 20 : 1 - 31
  • [2] A global optimization method for nonlinear bilevel programming problems
    Amouzegar, MA
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1999, 29 (06): : 771 - 777
  • [3] Global optimization of bilevel programming problems via parametric programming
    Pistikopoulos, EN
    Dua, V
    Ryu, JH
    [J]. FRONTIERS IN GLOBAL OPTIMIZATION, 2003, 74 : 457 - 476
  • [4] Global optimization method for nonlinear bilevel integer programming
    Su, Wei-Ling
    Zheng, Pi-E
    Li, Tong
    [J]. Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2003, 36 (04): : 512 - 517
  • [5] GLOBAL SOLVER FOR NONLINEAR BILEVEL VECTOR OPTIMIZATION PROBLEMS
    Gebhardt, Elisabeth
    Jahn, Johannes
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2009, 5 (03): : 387 - 401
  • [6] Application of a global optimization method to nonlinear bilevel integer programming
    Lei, L
    Teng, CX
    [J]. PROCEEDINGS OF 2002 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE & ENGINEERING, VOLS I AND II, 2002, : 476 - 482
  • [7] Global optimization method based on the statistical genetic algorithm for solving nonlinear bilevel programming problems
    Li, Hong
    Jiao, Yong-Chang
    Zhang, Li
    Zhang, Fu-Shun
    [J]. CIS: 2007 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY, PROCEEDINGS, 2007, : 96 - +
  • [8] Global optimization of mixed-integer bilevel programming problems
    Gumus, Zeynep H.
    Floudas, Christodoulos A.
    [J]. COMPUTATIONAL MANAGEMENT SCIENCE, 2005, 2 (03) : 181 - 212
  • [9] CONVERGENT SEMIDEFINITE PROGRAMMING RELAXATIONS FOR GLOBAL BILEVEL POLYNOMIAL OPTIMIZATION PROBLEMS
    Jeyakumar, V.
    Lasserre, J. B.
    Li, G.
    Pham, T. S.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (01) : 753 - 780
  • [10] A global optimization method for solving convex quadratic bilevel programming problems
    Muu, LD
    Quy, NV
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2003, 26 (02) : 199 - 219