Decomposition-based Method for Sparse Semidefinite Relaxations of Polynomial Optimization Problems

被引:7
|
作者
Kleniati, P. M. [1 ]
Parpas, P. [1 ]
Rustem, B. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London SW7 2AZ, England
关键词
Polynomial optimization; Semidefinite programming; Sparse SDP relaxations; Benders decomposition; SQUARES; SUMS;
D O I
10.1007/s10957-009-9624-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider polynomial optimization problems pervaded by a sparsity pattern. It has been shown in Lasserre (SIAM J. Optim. 17(3):822-843, 2006) and Waki et al. (SIAM J. Optim. 17(1):218-248, 2006) that the optimal solution of a polynomial programming problem with structured sparsity can be computed by solving a series of semidefinite relaxations that possess the same kind of sparsity. We aim at solving the former relaxations with a decomposition-based method, which partitions the relaxations according to their sparsity pattern. The decomposition-based method that we propose is an extension to semidefinite programming of the Benders decomposition for linear programs (Benders, Comput. Manag. Sci. 2(1):3-19, 2005).
引用
收藏
页码:289 / 310
页数:22
相关论文
共 50 条
  • [1] Decomposition-based Method for Sparse Semidefinite Relaxations of Polynomial Optimization Problems
    P. M. Kleniati
    P. Parpas
    B. Rustem
    Journal of Optimization Theory and Applications, 2010, 145 : 289 - 310
  • [2] ON THE LASSERRE HIERARCHY OF SEMIDEFINITE PROGRAMMING RELAXATIONS OF CONVEX POLYNOMIAL OPTIMIZATION PROBLEMS
    De Klerk, Etienne
    Laurent, Monique
    SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (03) : 824 - 832
  • [3] CONVERGENT SEMIDEFINITE PROGRAMMING RELAXATIONS FOR GLOBAL BILEVEL POLYNOMIAL OPTIMIZATION PROBLEMS
    Jeyakumar, V.
    Lasserre, J. B.
    Li, G.
    Pham, T. S.
    SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (01) : 753 - 780
  • [4] A polynomial dimensional decomposition-based method for robust topology optimization
    Ren, Xuchun
    Zhang, Xiaodong
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2021, 64 (06) : 3527 - 3548
  • [5] A polynomial dimensional decomposition-based method for robust topology optimization
    Xuchun Ren
    Xiaodong Zhang
    Structural and Multidisciplinary Optimization, 2021, 64 : 3527 - 3548
  • [6] SparsePOP - A sparse semidefinite programming relaxation of polynomial optimization problems
    Waki, Hayato
    Kim, Sunyoung
    Kojima, Masakazu
    Muramatsu, Masakazu
    Sugimoto, Hiroshi
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2008, 35 (02): : 1 - 13
  • [7] Equality based contraction of semidefinite programming relaxations in polynomial optimization
    Vo, Cong
    Muramatsu, Masakazu
    Kojima, Masakazu
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 2008, 51 (01) : 111 - 125
  • [8] A MULTIGRID APPROACH TO SDP RELAXATIONS OF SPARSE POLYNOMIAL OPTIMIZATION PROBLEMS
    Campos, Juan S.
    Parpas, Panos
    SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (01) : 1 - 29
  • [9] Algorithm 950: Ncpol2sdpa-Sparse Semidefinite Programming Relaxations for Polynomial Optimization Problems of Noncommuting Variables
    Wittek, Peter
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2015, 41 (03):
  • [10] Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity
    Waki, Hayato
    Kim, Sunyoung
    Kojima, Masakazu
    Muramatsu, Masakazu
    SIAM JOURNAL ON OPTIMIZATION, 2006, 17 (01) : 218 - 242