Shape Preserving RGB-D Depth Map Restoration

被引:0
|
作者
Liu, Wei [1 ]
Xue, Haoyang [1 ]
Gu, Yun [1 ]
Yang, Jie [1 ]
Wu, Qiang [2 ]
Jia, Zhenhong [3 ]
机构
[1] Shanghai Jiao Tong Univ, Minist Educ Syst Control & Informat Proc, Key Lab, Shanghai 200030, Peoples R China
[2] Univ Technol, Sch Comp & Communicat, Sydney, NSW, Australia
[3] Xinjiang Univ, Sch Informat Sci & Engn, Urumqi, Peoples R China
关键词
depth map restoration; joint bilateral filter; diffusion; Kinect;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The RGB-D cameras have enjoined a great popularity these years. However, the quality of the depth maps obtained by such cameras is far from perfect. In this paper, we propose a framework for shape preserving depth map restoration for RGB-D cameras. The quality of the depth map is improved from three aspects: 1) the proposed region adaptive bilateral filter (RA-BF) smooths the depth noise across the depth map adaptively, 2) by associating the color information with the depth information, incorrect depth values are adjusted properly, 3) a selective joint bilateral filter (SJBF) is proposed to successfully fill in the holes caused by low quality depth sensing. Encouraging performance is obtained through our experiments.
引用
收藏
页码:150 / 158
页数:9
相关论文
共 50 条
  • [21] RGB×D: Learning depth-weighted RGB patches for RGB-D indoor semantic segmentation
    Cao, Jinming
    Leng, Hanchao
    Cohen-Or, Daniel
    Lischinski, Dani
    Chen, Ying
    Tu, Changhe
    Li, Yangyan
    [J]. Neurocomputing, 2021, 462 : 568 - 580
  • [22] Unsupervised Depth Completion and Denoising for RGB-D Sensors
    Fan, Lei
    Li, Yunxuan
    Jiang, Chen
    Wu, Ying
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 8734 - 8740
  • [23] Genetic Algorithm for Depth Images in RGB-D Cameras
    Danciu, Gabriel
    Szekely, Iuliu
    [J]. 2014 IEEE 20TH INTERNATIONAL SYMPOSIUM FOR DESIGN AND TECHNOLOGY IN ELECTRONIC PACKAGING (SIITME), 2014, : 233 - 238
  • [24] RGB-D based Cognitive Map Building and Navigation
    Tian, Bo
    Shim, Vui Ann
    Yuan, Miaolong
    Srinivasan, Chithra
    Tang, Huajin
    Li, Haizhou
    [J]. 2013 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2013, : 1562 - 1567
  • [25] DEPTH ENHANCEMENT USING RGB-D GUIDED FILTERING
    Hui, Tak-Wai
    Ngan, King Ngi
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 3832 - 3836
  • [26] Deep RGB-D Saliency Detection Without Depth
    Zhang, Yuan-fang
    Zheng, Jiangbin
    Jia, Wenjing
    Huang, Wenfeng
    Li, Long
    Liu, Nian
    Li, Fei
    He, Xiangjian
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 755 - 767
  • [27] Deep Depth Completion of a Single RGB-D Image
    Zhang, Yinda
    Funkhouser, Thomas
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 175 - 185
  • [28] Depth-Aware CNN for RGB-D Segmentation
    Wang, Weiyue
    Neumann, Ulrich
    [J]. COMPUTER VISION - ECCV 2018, PT XI, 2018, 11215 : 144 - 161
  • [29] DEPTH REMOVAL DISTILLATION FOR RGB-D SEMANTIC SEGMENTATION
    Fang, Tiyu
    Liang, Zhen
    Shao, Xiuli
    Dong, Zihao
    Li, Jinping
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2405 - 2409
  • [30] Depth Refinement for Binocular Kinect RGB-D Cameras
    Bai, Jinghui
    Yang, Jingyu
    Ye, Xinchen
    Hou, Chunping
    [J]. 2016 30TH ANNIVERSARY OF VISUAL COMMUNICATION AND IMAGE PROCESSING (VCIP), 2016,