Shape Preserving RGB-D Depth Map Restoration

被引:0
|
作者
Liu, Wei [1 ]
Xue, Haoyang [1 ]
Gu, Yun [1 ]
Yang, Jie [1 ]
Wu, Qiang [2 ]
Jia, Zhenhong [3 ]
机构
[1] Shanghai Jiao Tong Univ, Minist Educ Syst Control & Informat Proc, Key Lab, Shanghai 200030, Peoples R China
[2] Univ Technol, Sch Comp & Communicat, Sydney, NSW, Australia
[3] Xinjiang Univ, Sch Informat Sci & Engn, Urumqi, Peoples R China
关键词
depth map restoration; joint bilateral filter; diffusion; Kinect;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The RGB-D cameras have enjoined a great popularity these years. However, the quality of the depth maps obtained by such cameras is far from perfect. In this paper, we propose a framework for shape preserving depth map restoration for RGB-D cameras. The quality of the depth map is improved from three aspects: 1) the proposed region adaptive bilateral filter (RA-BF) smooths the depth noise across the depth map adaptively, 2) by associating the color information with the depth information, incorrect depth values are adjusted properly, 3) a selective joint bilateral filter (SJBF) is proposed to successfully fill in the holes caused by low quality depth sensing. Encouraging performance is obtained through our experiments.
引用
收藏
页码:150 / 158
页数:9
相关论文
共 50 条
  • [31] Accurate 3-D Reconstruction with RGB-D Cameras using Depth Map Fusion and Pose Refinement
    Ylimaki, Markus
    Heikkila, Janne
    Kannala, Juho
    [J]. 2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 1977 - 1982
  • [32] Dynamic RGB-D SLAM algorithm based on reprojection depth difference cumulative map and static probability
    Lin, Kai
    Liang, Xin-Wu
    Cai, Ji-Yuan
    [J]. Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2022, 56 (06): : 1062 - 1070
  • [33] Approximate Depth Shape Reconstruction for RGB-D Images Captured from HMDs for Mixed Reality Applications
    Awano, Naoyuki
    [J]. JOURNAL OF IMAGING, 2020, 6 (03)
  • [34] Scan Planning for RGB-D Mapping Based on Grid Map
    Cheng, Min
    Wang, Feng
    Chen, Xiaoping
    [J]. INTELLIGENT AUTONOMOUS SYSTEMS 13, 2016, 302 : 231 - 243
  • [35] LARGE-AREA DEPTH RECOVERY FOR RGB-D CAMERA
    Yan, Zengqiang
    Yu, Li
    Xiong, Zixiang
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 1409 - 1413
  • [36] Efficient Incremental Map Segmentation in Dense RGB-D Maps
    Finman, Ross
    Whelan, Thomas
    Kaess, Michael
    Leonard, John J.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 5488 - 5494
  • [37] Dense RGB-D visual odometry using inverse depth
    Gutierrez-Gomez, Daniel
    Mayol-Cuevas, Walterio
    Guerrero, J. J.
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2016, 75 : 571 - 583
  • [38] Learning to Weight Color and Depth for RGB-D Visual Search
    Petrelli, Alioscia
    Di Stefano, Luigi
    [J]. IMAGE ANALYSIS AND PROCESSING,(ICIAP 2017), PT I, 2017, 10484 : 648 - 659
  • [39] A New Depth Descriptor for Pedestrian Detection in RGB-D Images
    Wang, Ningbo
    Gong, Xiaojin
    Liu, Jilin
    [J]. 2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 3688 - 3691
  • [40] BRAND: A Robust Appearance and Depth Descriptor for RGB-D Images
    Nascimento, Erickson R.
    Oliveira, Gabriel L.
    Campos, Mario F. M.
    Vieira, Antonio W.
    Schwartz, William Robson
    [J]. 2012 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2012, : 1720 - 1726