(m, ρ)-Quasi-Einstein Metrics in the Frame-Work of K -Contact Manifolds

被引:17
|
作者
Ghosh, Amalendu [2 ,1 ]
机构
[1] Chandernagore Coll, Dept Math, Chandannagar 712136, WB, India
关键词
Contact metric manifold; K -contact manifold; Generalized quasi-Einstein metric; (m; rho)-quasi-Einstein metric; EINSTEIN MANIFOLDS; RICCI;
D O I
10.1007/s11040-014-9161-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this note is to prove that if a complete K -contact manifold M of dimension (2n + 1) admits a (m, rho)-quasi-Einstein metric with m not equal 1, then we prove that f is constant and M becomes compact, Einstein and Sasakian.
引用
收藏
页码:369 / 376
页数:8
相关论文
共 50 条
  • [31] On the Rigidity of Generalized Quasi-Einstein Manifolds
    M. Ahmad Mirshafeazadeh
    B. Bidabad
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 2029 - 2042
  • [32] RIGID PROPERTIES OF QUASI-EINSTEIN METRICS
    Wang, Lin Feng
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (10) : 3679 - 3689
  • [33] NONEXISTENCE OF NONTRIVIAL QUASI-EINSTEIN METRICS
    Chu, Yawei
    KODAI MATHEMATICAL JOURNAL, 2012, 35 (02) : 374 - 381
  • [34] On the Rigidity of Generalized Quasi-Einstein Manifolds
    Mirshafeazadeh, M. Ahmad
    Bidabad, B.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) : 2029 - 2042
  • [35] A note on closed quasi-Einstein manifolds
    Costa-Filho, Wagner Oliveira
    ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (05)
  • [36] Quasi-Einstein metrics and their renormalizability properties
    Chave, T
    Valent, G
    HELVETICA PHYSICA ACTA, 1996, 69 (03): : 344 - 347
  • [37] Quasi-Einstein metrics on sphere bundles
    Huang, Solomon
    Murphy, Tommy
    Phan, Thanh Nhan
    INVOLVE, A JOURNAL OF MATHEMATICS, 2022, 15 (03): : 507 - 514
  • [38] Characterizations of Generalized Quasi-Einstein Manifolds
    Sular, Sibel
    Ozgur, Cihan
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2012, 20 (01): : 407 - 416
  • [39] A note on generalized quasi-Einstein manifolds
    Deng, YiHua
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (10) : 1122 - 1126
  • [40] ON THE EXISTENCE OF GENERALIZED QUASI-EINSTEIN MANIFOLDS
    Chand De, Uday
    Mallick, Sahanous
    ARCHIVUM MATHEMATICUM, 2011, 47 (04): : 279 - 291