(m, ρ)-Quasi-Einstein Metrics in the Frame-Work of K -Contact Manifolds

被引:17
|
作者
Ghosh, Amalendu [2 ,1 ]
机构
[1] Chandernagore Coll, Dept Math, Chandannagar 712136, WB, India
关键词
Contact metric manifold; K -contact manifold; Generalized quasi-Einstein metric; (m; rho)-quasi-Einstein metric; EINSTEIN MANIFOLDS; RICCI;
D O I
10.1007/s11040-014-9161-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this note is to prove that if a complete K -contact manifold M of dimension (2n + 1) admits a (m, rho)-quasi-Einstein metric with m not equal 1, then we prove that f is constant and M becomes compact, Einstein and Sasakian.
引用
收藏
页码:369 / 376
页数:8
相关论文
共 50 条
  • [11] On generalized quasi-Einstein manifolds
    Mirshafeazadeh, Mir Ahmad
    Bidabad, Behroz
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2019, 10 (03) : 193 - 202
  • [12] THE NONEXISTENCE OF QUASI-EINSTEIN METRICS
    Case, Jeffrey S.
    PACIFIC JOURNAL OF MATHEMATICS, 2010, 248 (02) : 277 - 284
  • [13] Rigidity of quasi-Einstein metrics
    Case, Jeffrey
    Shu, Yu-Jen
    Wei, Guofang
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (01) : 93 - 100
  • [14] Rigidity of Einstein manifolds and generalized quasi-Einstein manifolds
    Deng, Yi Hua
    Luo, Li Ping
    Zhou, Li Jun
    ANNALES POLONICI MATHEMATICI, 2015, 115 (03) : 235 - 240
  • [15] Quasi-Einstein Kahler metrics
    Pedersen, H
    Tonnesen-Friedman, C
    Valent, G
    LETTERS IN MATHEMATICAL PHYSICS, 1999, 50 (03) : 229 - 241
  • [16] ON LORENTZIAN QUASI-EINSTEIN MANIFOLDS
    Shaikh, Absos Ali
    Kim, Young Ho
    Hui, Shyamal Kumar
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (04) : 669 - 689
  • [17] ON NONCOMPACT τ-QUASI-EINSTEIN METRICS
    Wang, Lin Feng
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 254 (02) : 449 - 464
  • [18] On generalized quasi-Einstein manifolds
    Freitas Filho, Antonio Airton
    Tenenblat, Keti
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 178
  • [19] The classification of -quasi-Einstein manifolds
    Huang, Guangyue
    Wei, Yong
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2013, 44 (03) : 269 - 282
  • [20] On pseudo quasi-Einstein manifolds
    Absos Ali Shaikh
    Periodica Mathematica Hungarica, 2009, 59 : 119 - 146