(m, ρ)-Quasi-Einstein Metrics in the Frame-Work of K -Contact Manifolds

被引:17
|
作者
Ghosh, Amalendu [2 ,1 ]
机构
[1] Chandernagore Coll, Dept Math, Chandannagar 712136, WB, India
关键词
Contact metric manifold; K -contact manifold; Generalized quasi-Einstein metric; (m; rho)-quasi-Einstein metric; EINSTEIN MANIFOLDS; RICCI;
D O I
10.1007/s11040-014-9161-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this note is to prove that if a complete K -contact manifold M of dimension (2n + 1) admits a (m, rho)-quasi-Einstein metric with m not equal 1, then we prove that f is constant and M becomes compact, Einstein and Sasakian.
引用
收藏
页码:369 / 376
页数:8
相关论文
共 50 条
  • [21] The extended quasi-Einstein manifolds
    Huang, Zhiming
    Su, Fuhong
    Lu, Weijun
    FILOMAT, 2024, 38 (11) : 3761 - 3775
  • [22] On quasi-Einstein Weyl manifolds
    Gul, Ilhan
    Canfes, Elif Ozkara
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (09)
  • [23] Isotropic quasi-Einstein manifolds
    Brozos-Vazquez, M.
    Garcia-Rio, E.
    Valle-Regueiro, X.
    CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (24)
  • [24] Uniqueness of quasi-Einstein metrics on 3-dimensional homogeneous manifolds
    Barros, A.
    Ribeiro, E., Jr.
    Silva Filho, J.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 35 : 60 - 73
  • [25] On a class of N(k)-mixed generalized quasi-Einstein manifolds
    Bhattacharyya, Arindam
    Pahan, Sampa
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2018, 22 (02): : 167 - 178
  • [26] Quasi-Einstein metrics and plane waves
    Brozos-Vazquez, M.
    Garcia-Rio, E.
    Gavino-Fernandez, S.
    XX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS, 2012, 1460 : 174 - 179
  • [27] Compact quasi-Einstein manifolds with boundary
    Diogenes, Rafael
    Gadelha, Tiago
    MATHEMATISCHE NACHRICHTEN, 2022, 295 (09) : 1690 - 1708
  • [28] ON PSEUDO GENERALIZED QUASI-EINSTEIN MANIFOLDS
    Shaikh, A. A.
    Jana, Sanjib Kumar
    TAMKANG JOURNAL OF MATHEMATICS, 2008, 39 (01): : 9 - 23
  • [29] On a Class of Quasi-Einstein Finsler Metrics
    Zhu, Hongmei
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (07)
  • [30] Characterizations of mixed quasi-Einstein manifolds
    Mallick, Sahanous
    Yildiz, Ahmet
    De, Uday Chand
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (06)