Hierarchical Bayesian LASSO for a negative binomial regression

被引:7
|
作者
Fu, Shuai [1 ]
机构
[1] SUPSI, Dalle Molle Inst Artificial Intelligence, Manno, Switzerland
关键词
Hierarchical Bayesian inference; LASSO; latent variable; generalized linear regression; negative binomial; Markov chain Monte Carlo; QUANTITATIVE TRAIT LOCI; MAXIMUM-LIKELIHOOD; INCOMPLETE DATA; MARKOV-MODELS; SELECTION;
D O I
10.1080/00949655.2015.1106541
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Numerous researches have been carried out to explain the relationship between the count data y and numbers of covariates x through a generalized linear model (GLM). This paper proposes a hierarchical Bayesian least absolute shrinkage and selection operator (LASSO) solution using six different prior models to the negative binomial regression. Latent variables Z have been introduced to simplify the GLM to a standard linear regression model. The proposed models regard two conjugate zero-mean Normal priors for the regression parameters and three independent priors for the variance: the Exponential, Inverse-Gamma and Scaled Inverse-chi(2) distributions. Different types of priors result in different amounts of shrinkage. A Metropolis-Hastings-within-Gibbs algorithm is used to compute the posterior distribution of the parameters of interest through a data augmentation process. Based on the posterior samples, an original double likelihood ratio test statistic have been proposed to choose the most relevant covariates and shrink the insignificant coefficients to zero. Numerical experiments on a real-life data set prove that Bayesian LASSO methods achieved significantly better predictive accuracy and robustness than the classical maximum likelihood estimation and the standard Bayesian inference.
引用
收藏
页码:2182 / 2203
页数:22
相关论文
共 50 条
  • [22] A note on accuracy of Bayesian LASSO regression in GWS
    Silva, Fabyano Fonseca
    Varona, Luis
    de Resende, Marcos Deon V.
    Bueno Filho, Julio Silvio S.
    Rosa, Guilherme J. M.
    Soriano Viana, Jose Marcelo
    [J]. LIVESTOCK SCIENCE, 2011, 142 (1-3) : 310 - 314
  • [23] Bayesian Lasso and multinomial logistic regression on GPU
    Cesnovar, Rok
    Strumbelj, Erik
    [J]. PLOS ONE, 2017, 12 (06):
  • [24] Bayesian Lasso-mixed quantile regression
    Alhamzawi, Rahim
    Yu, Keming
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (04) : 868 - 880
  • [25] A Bayesian choice between Poisson, binomial and negative binomial models
    Dauxois, Jean-Yves
    Druilhet, Pierre
    Pommeret, Denys
    [J]. TEST, 2006, 15 (02) : 423 - 432
  • [26] A bayesian choice between poisson, binomial and negative binomial models
    Jean-Yves Dauxois
    Pierre Druilhet
    Denys Pommeret
    [J]. Test, 2006, 15 : 423 - 432
  • [27] The VGAM package for negative binomial regression
    Yee, Thomas W.
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2020, 62 (01) : 116 - 131
  • [28] Seemingly unrelated negative binomial regression
    Winkelmann, R
    [J]. OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2000, 62 (04) : 553 - 560
  • [29] NEGATIVE BINOMIAL AND MIXED POISSON REGRESSION
    LAWLESS, JF
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1987, 15 (03): : 209 - 225
  • [30] Semiparametric Negative Binomial Regression Models
    Li, Chin-Shang
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2010, 39 (03) : 475 - 486