Bayesian Lasso-mixed quantile regression

被引:21
|
作者
Alhamzawi, Rahim [1 ]
Yu, Keming [1 ]
机构
[1] Brunel Univ, Dept Math Sci, Uxbridge UB8 3PH, Middx, England
关键词
asymmetric Laplace distribution; Gibbs sampler; random effects; longitudinal data; quantile regression; SELECTION;
D O I
10.1080/00949655.2012.731689
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we discuss the regularization in linear-mixed quantile regression. A hierarchical Bayesian model is used to shrink the fixed and random effects towards the common population values by introducing an l(1) penalty in the mixed quantile regression check function. A Gibbs sampler is developed to simulate the parameters from the posterior distributions. Through simulation studies and analysis of an age-related macular degeneration (ARMD) data, we assess the performance of the proposed method. The simulation studies and the ARMD data analysis indicate that the proposed method performs well in comparison with the other approaches.
引用
收藏
页码:868 / 880
页数:13
相关论文
共 50 条
  • [1] Bayesian lasso binary quantile regression
    Dries F. Benoit
    Rahim Alhamzawi
    Keming Yu
    [J]. Computational Statistics, 2013, 28 : 2861 - 2873
  • [2] Bayesian reciprocal LASSO quantile regression
    Alhamzawi, Rahim
    Mallick, Himel
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (11) : 6479 - 6494
  • [3] Bayesian lasso binary quantile regression
    Benoit, Dries F.
    Alhamzawi, Rahim
    Yu, Keming
    [J]. COMPUTATIONAL STATISTICS, 2013, 28 (06) : 2861 - 2873
  • [4] Bayesian adaptive Lasso quantile regression
    Alhamzawi, Rahim
    Yu, Keming
    Benoit, Dries F.
    [J]. STATISTICAL MODELLING, 2012, 12 (03) : 279 - 297
  • [5] Variational inference on a Bayesian adaptive lasso Tobit quantile regression model
    Wang, Zhiqiang
    Wu, Ying
    Cheng, WeiLi
    [J]. STAT, 2023, 12 (01):
  • [6] Bayesian LASSO-Regularized quantile regression for linear regression models with autoregressive errors
    Tian, Yuzhu
    Shen, Silian
    Lu, Ge
    Tang, Manlai
    Tian, Maozai
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (03) : 777 - 796
  • [7] THE BAYESIAN NESTED LASSO FOR MIXED FREQUENCY REGRESSION MODELS
    Ghosh, Satyajit
    Khare, Kshitij
    Michailidis, George
    [J]. ANNALS OF APPLIED STATISTICS, 2023, 17 (03): : 2279 - 2304
  • [8] Bayesian adaptive lasso quantile regression with non-ignorable missing responses
    Chen, Ranran
    Dao, Mai
    Ye, Keying
    Wang, Min
    [J]. COMPUTATIONAL STATISTICS, 2024,
  • [9] Bayesian adaptive Lasso for quantile regression models with nonignorably missing response data
    Xu, Dengke
    Tang, Niansheng
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (09) : 2727 - 2742
  • [10] Bayesian inference for additive mixed quantile regression models
    Yue, Yu Ryan
    Rue, Havard
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (01) : 84 - 96