A bayesian choice between poisson, binomial and negative binomial models

被引:0
|
作者
Jean-Yves Dauxois
Pierre Druilhet
Denys Pommeret
机构
[1] ENSAI,Department of Statistics
来源
Test | 2006年 / 15卷
关键词
Jeffreys-Lindley paradox; natural exponential family; overdispersion; Sibship data; variance function; 62C12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a Bayesian method for modelling count data by Poisson, binomial or negative binomial distributions. These three distributions have in common that the variance is, at most, a quadratic function of the mean. We use prior distributions on the variance function coefficients to consider simultaneously the three possible models and decide which one fits the data better. This approach sheds new light on the analysis of the Sibship data (Sokal and Rohlf, 1987). The Jeffreys-Lindley paradox is discussed through some illustrations.
引用
收藏
页码:423 / 432
页数:9
相关论文
共 50 条