Self-Referenced Deep Learning

被引:4
|
作者
Lan, Xu [1 ]
Zhu, Xiatian [2 ]
Gong, Shaogang [1 ]
机构
[1] Queen Mary Univ London, London, England
[2] Vis Semant Ltd, London, England
来源
基金
“创新英国”项目;
关键词
D O I
10.1007/978-3-030-20890-5_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge distillation is an effective approach to transferring knowledge from a teacher neural network to a student target network for satisfying the low-memory and fast running requirements in practice use. Whilst being able to create stronger target networks compared to the vanilla non-teacher based learning strategy, this scheme needs to train additionally a large teacher model with expensive computational cost. In this work, we present a Self-Referenced Deep Learning (SRDL) strategy. Unlike both vanilla optimisation and existing knowledge distillation, SRDL distils the knowledge discovered by the in-training target model back to itself to regularise the subsequent learning procedure therefore eliminating the need for training a large teacher model. SRDL improves the model generalisation performance compared to vanilla learning and conventional knowledge distillation approaches with negligible extra computational cost. Extensive evaluations show that a variety of deep networks benefit from SRDL resulting in enhanced deployment performance on both coarse-grained object categorisation tasks (CIFAR10, CIFAR100, Tiny ImageNet, and ImageNet) and fine-grained person instance identification tasks (Market-1501).
引用
收藏
页码:284 / 300
页数:17
相关论文
共 50 条
  • [1] SELF-REFERENCE REFERENCED, AND SELF-REFERENCED
    SCHMUCKER, KJ
    [J]. COMMUNICATIONS OF THE ACM, 1980, 23 (12) : 736 - 736
  • [2] Self-referenced spectral interferometry
    T. Oksenhendler
    S. Coudreau
    N. Forget
    V. Crozatier
    S. Grabielle
    R. Herzog
    O. Gobert
    D. Kaplan
    [J]. Applied Physics B, 2010, 99 : 7 - 12
  • [3] Self-referenced spectral interferometry
    Oksenhendler, T.
    Coudreau, S.
    Forget, N.
    Crozatier, V.
    Grabielle, S.
    Herzog, R.
    Gobert, O.
    Kaplan, D.
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2010, 99 (1-2): : 7 - 12
  • [4] Self-referenced spectral interferometry
    Oksenhendler, T.
    Coudreau, S.
    Forget, N.
    Grabielle, S.
    Kaplan, D.
    Gobert, O.
    [J]. 2009 CONFERENCE ON LASERS AND ELECTRO-OPTICS AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2009), VOLS 1-5, 2009, : 1195 - +
  • [5] Self-referenced waveguide grating sensor
    Kehl, Florian
    Follonier, Stephane
    [J]. OPTICS LETTERS, 2016, 41 (07) : 1447 - 1450
  • [6] Self-Referenced Measurement of Light Waves
    Shirai, Hideto
    Nomura, Yutaka
    Fuji, Takao
    [J]. LASER & PHOTONICS REVIEWS, 2017, 11 (04)
  • [7] Self-Referenced Read methodology for EMs
    Sforzin, Marco
    Mirichigni, Graziano
    Orlando, Alessandro
    Amato, Paolo
    [J]. 2018 IEEE 10TH INTERNATIONAL MEMORY WORKSHOP (IMW), 2018, : 169 - 172
  • [8] Self-referenced interferometer for cylindrical surfaces
    Sarbort, Martin
    Rerucha, Simon
    Hola, Miroslava
    Buchta, Zdenek
    Lazar, Josef
    [J]. APPLIED OPTICS, 2015, 54 (33) : 9930 - 9938
  • [9] Self-referenced digital holographic microscopy
    Kiss, Marton Zsolt
    Goeroecs, Zoltan
    Tokes, Szabolcs
    [J]. 2012 13TH INTERNATIONAL WORKSHOP ON CELLULAR NANOSCALE NETWORKS AND THEIR APPLICATIONS (CNNA), 2012,
  • [10] Self-referenced Diffraction Phase Microscopy
    Hillman, Timothy R.
    Lue, Niyom
    Sung, Yongjin
    Dasari, Ramachandra R.
    So, Peter T. C.
    Yaqoob, Zahid
    [J]. THREE-DIMENSIONAL AND MULTIDIMENSIONAL MICROSCOPY: IMAGE ACQUISITION AND PROCESSING XIX, 2012, 8227