Self-Referenced Deep Learning

被引:4
|
作者
Lan, Xu [1 ]
Zhu, Xiatian [2 ]
Gong, Shaogang [1 ]
机构
[1] Queen Mary Univ London, London, England
[2] Vis Semant Ltd, London, England
来源
基金
“创新英国”项目;
关键词
D O I
10.1007/978-3-030-20890-5_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge distillation is an effective approach to transferring knowledge from a teacher neural network to a student target network for satisfying the low-memory and fast running requirements in practice use. Whilst being able to create stronger target networks compared to the vanilla non-teacher based learning strategy, this scheme needs to train additionally a large teacher model with expensive computational cost. In this work, we present a Self-Referenced Deep Learning (SRDL) strategy. Unlike both vanilla optimisation and existing knowledge distillation, SRDL distils the knowledge discovered by the in-training target model back to itself to regularise the subsequent learning procedure therefore eliminating the need for training a large teacher model. SRDL improves the model generalisation performance compared to vanilla learning and conventional knowledge distillation approaches with negligible extra computational cost. Extensive evaluations show that a variety of deep networks benefit from SRDL resulting in enhanced deployment performance on both coarse-grained object categorisation tasks (CIFAR10, CIFAR100, Tiny ImageNet, and ImageNet) and fine-grained person instance identification tasks (Market-1501).
引用
收藏
页码:284 / 300
页数:17
相关论文
共 50 条
  • [41] Self-referenced spectral interferometry based on self-diffraction effect
    Liu, Jun
    Jiang, Yongliang
    Kobayashi, Takayoshi
    Li, Ruxin
    Xu, Zhizan
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2012, 29 (01) : 29 - 34
  • [42] Machine Learning Implementation for Unambiguous Refractive Index Measurement Using a Self-Referenced Fiber Refractometer
    Martinez-Manuel, Rodolfo
    Valentin-Coronado, Luis M.
    Esquivel-Hernandez, Jonathan
    Jean-Jacques Monga, Kaboko
    LaRochelle, Sophie
    [J]. IEEE SENSORS JOURNAL, 2022, 22 (14) : 14134 - 14141
  • [43] Self-referenced photonic chip soliton Kerr frequency comb
    Brasch, Victor
    Lucas, Erwan
    Jost, John D.
    Geiselmann, Michael
    Kippenberg, Tobias J.
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2017, 6 : e16202 - e16202
  • [44] Self-referenced measurement of the complete electric field of ultrashort pulses
    Gabolde, P
    Trebino, R
    [J]. OPTICS EXPRESS, 2004, 12 (19): : 4423 - 4429
  • [45] EFFECT OF REFLECTION OF FEELING AND PROBE ON CLIENT SELF-REFERENCED AFFECT
    HIGHLEN, PS
    BACCUS, GK
    [J]. JOURNAL OF COUNSELING PSYCHOLOGY, 1977, 24 (05) : 440 - 443
  • [46] Self-Referenced Single-Electron Quantized Current Source
    Fricke, Lukas
    Wulf, Michael
    Kaestner, Bernd
    Hohls, Frank
    Mirovsky, Philipp
    Mackrodt, Brigitte
    Dolata, Ralf
    Weimann, Thomas
    Pierz, Klaus
    Siegner, Uwe
    Schumacher, Hans W.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (22)
  • [47] A self-referenced optical phase noise analyzer for quantum technologies
    Freund, R.
    Marciniak, Ch. D.
    Monz, T.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2024, 95 (06):
  • [48] A Self-Referenced Refractive Index Sensor Based on Gold Nanoislands
    Barrios, Carlos Angulo
    Mirea, Teona
    Represa, Miguel Huerga
    [J]. SENSORS, 2023, 23 (01)
  • [49] Characterization and optimization of a femtosecond laser by Self-Referenced Spectral Interferometry
    Moulet, A.
    Forget, N.
    Herzog, R.
    Coudreau, S.
    Oksenhendler, T.
    [J]. 2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [50] Hierarchical patterning of organic molecules for self-referenced vapor sensing
    Chang, Meng-Jie
    Ai, Yong
    Zhang, Li
    Gao, Fei
    Zhang, Hao-Li
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (16) : 7704 - 7707