Limit cycles in discontinuous classical Lienard equations

被引:27
|
作者
Martins, Ricardo Miranda [1 ]
Mereu, Ana Cristina [2 ]
机构
[1] Univ Campinas UNICAMP, Inst Math Stat & Sci Comp, BR-13083859 Campinas, SP, Brazil
[2] Univ Fed Sao Carlos, Dept Phys Chem & Math, BR-18052780 Sorocaba, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Limit cycles; Lienard systems; Averaging theory;
D O I
10.1016/j.nonrwa.2014.04.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the number of limit cycles which can bifurcate from the periodic orbits of a linear center perturbed by nonlinear functions inside the class of all classical polynomial Lienard differential equations allowing discontinuities. In particular our results show that for any n >= 1 there are differential equations of the form (x) over dot+f (x)(x) over dot + x+sgn( (x) over dot)g(x) = 0, with f and g polynomials of degree n and 1 respectively, having [n/2] 1 limit cycles, where [.] denotes the integer part function. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:67 / 73
页数:7
相关论文
共 50 条