Limit cycles in discontinuous classical Lienard equations

被引:27
|
作者
Martins, Ricardo Miranda [1 ]
Mereu, Ana Cristina [2 ]
机构
[1] Univ Campinas UNICAMP, Inst Math Stat & Sci Comp, BR-13083859 Campinas, SP, Brazil
[2] Univ Fed Sao Carlos, Dept Phys Chem & Math, BR-18052780 Sorocaba, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Limit cycles; Lienard systems; Averaging theory;
D O I
10.1016/j.nonrwa.2014.04.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the number of limit cycles which can bifurcate from the periodic orbits of a linear center perturbed by nonlinear functions inside the class of all classical polynomial Lienard differential equations allowing discontinuities. In particular our results show that for any n >= 1 there are differential equations of the form (x) over dot+f (x)(x) over dot + x+sgn( (x) over dot)g(x) = 0, with f and g polynomials of degree n and 1 respectively, having [n/2] 1 limit cycles, where [.] denotes the integer part function. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:67 / 73
页数:7
相关论文
共 50 条
  • [41] The uniqueness of limit cycles for Lienard system
    Zhou, YR
    Wang, CW
    Blackmore, D
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 304 (02) : 473 - 489
  • [42] Existence of limit cycles of Lienard equation
    [J]. Qingdao Daxue Xuebao(Gongcheng Jishuban)/Journal of Qingdao University (Engineering & Technology Edition), 1998, 13 (04): : 78 - 81
  • [43] LIMIT CYCLES IN A SWITCHING LIENARD SYSTEM
    Wang, Xiangyu
    Guo, Laigang
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (02): : 1503 - 1512
  • [44] Limit cycles of polynomial Lienard systems
    [J]. Phys Rev E., 4 (5185):
  • [45] ON THE EXISTENCE OF LIMIT CYCLES OF LIENARD EQUATION
    黄安基
    曹登庆
    [J]. Applied Mathematics and Mechanics(English Edition), 1990, (02) : 125 - 138
  • [46] Limit cycles in Lienard systems with saturation
    Lathuiliere, Thomas
    Valmorbida, Giorgio
    Panteley, Elena
    [J]. IFAC PAPERSONLINE, 2018, 51 (33): : 127 - 131
  • [47] A new criterion for controlling the number of limit cycles of some generalized Lienard equations
    Gasull, A
    Giacomini, H
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 185 (01) : 54 - 73
  • [48] Limit cycles in generalized Lienard systems
    Yu, P.
    Han, M.
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 30 (05) : 1048 - 1068
  • [49] Limit cycles of polynomial Lienard systems
    Llibre, J
    Pizarro, L
    Ponce, E
    [J]. PHYSICAL REVIEW E, 1998, 58 (04): : 5185 - 5187
  • [50] On the algebraic limit cycles of Lienard systems
    Llibre, Jaume
    Zhang, Xiang
    [J]. NONLINEARITY, 2008, 21 (09) : 2011 - 2022