Limit cycles of polynomial Lienard systems

被引:8
|
作者
Llibre, J [1 ]
Pizarro, L
Ponce, E
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[2] ES Ingenieros Camino Descubrimientos, Dept Matemat Aplicada 2, Seville 41092, Spain
来源
PHYSICAL REVIEW E | 1998年 / 58卷 / 04期
关键词
D O I
10.1103/PhysRevE.58.5185
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Recently [H. Giacomini and S. Neukirch, Phys. Rev. E 56, 3809 (1997)], an algorithm to obtain the number of limit cycles of Lienard systems has been proposed. The quoted paper also includes a method to approximate the eventual limit cycles and a conjecture on the behavior of the algorithm. The algorithm is reviewed and some examples, which show that the algorithm is really efficient, are given. However, these examples indicate that the aforementioned conjecture may have been incorrectly stated. A different conjecture is proposed and some open questions are formulated. [S1063-651X(98)16809-5].
引用
收藏
页码:5185 / 5187
页数:3
相关论文
共 50 条
  • [1] Limit cycles of polynomial Lienard systems
    [J]. Phys Rev E., 4 (5185):
  • [2] Limit cycles of some polynomial Lienard systems
    Xu, Weijiao
    Li, Cuiping
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (01) : 367 - 378
  • [3] On the number of limit cycles of polynomial Lienard systems
    Han, Maoan
    Romanovski, Valery G.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (03) : 1655 - 1668
  • [4] NUMBER OF LIMIT CYCLES OF SOME POLYNOMIAL LIENARD SYSTEMS
    Xu, Weijiao
    Li, Cuiping
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (04):
  • [5] Limit cycles for a generalization of polynomial Lienard differential systems
    Llibre, Jaume
    Valls, Claudia
    [J]. CHAOS SOLITONS & FRACTALS, 2013, 46 : 65 - 74
  • [6] ON THE NUMBER OF LIMIT CYCLES FOR A GENERALIZATION OF LIENARD POLYNOMIAL DIFFERENTIAL SYSTEMS
    Llibre, Jaume
    Valls, Claudia
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (03):
  • [7] Small-amplitude limit cycles in polynomial Lienard systems
    Christopher, Colin J.
    Lloyd, Noel G.
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1996, 3 (02): : 183 - 190
  • [8] On the number of limit cycles of a class of polynomial systems of Lienard type
    Chang, Guifeng
    Zhang, Tonghua
    Han, Maoan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (02) : 775 - 780
  • [9] Limit cycles of polynomial Lienard systems via the averaging method
    Shi, Juanrong
    Wang, Weixia
    Zhang, Xiang
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 45 : 650 - 667
  • [10] On the Number of Limit Cycles of Discontinuous Lienard Polynomial Differential Systems
    Jiang, Fangfang
    Ji, Zhicheng
    Wang, Yan
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (14):