Alien limit cycles in Lienard equations

被引:12
|
作者
Coll, B. [1 ]
Dumortier, F. [2 ]
Prohens, R. [1 ]
机构
[1] Univ Illes Balears, Dept Matemat & Informat, Palma De Mallorca 07122, Illes Balears, Spain
[2] Univ Hasselt, Dept Wiskunde, B-3590 Diepenbeek, Belgium
关键词
Planar vector field; Lienard equation; Hamiltonian perturbation; Limit cycle; Abelian integral; 2-Saddle cycle; HAMILTONIAN 2-SADDLE CYCLE; MATHEMATICAL PROBLEMS; ABELIAN-INTEGRALS;
D O I
10.1016/j.jde.2012.11.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper aims at providing an example of a family of polynomial Lienard equations exhibiting an alien limit cycle. This limit cycle is perturbed from a 2-saddle cycle in the boundary of an annulus of periodic orbits given by a Hamiltonian vector field. The Hamiltonian represents a truncated pendulum of degree 4. In comparison to a former polynomial example, not only the equations are simpler but a lot of tedious calculations can be avoided, making the example also interesting with respect to simplicity in treatment. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1582 / 1600
页数:19
相关论文
共 50 条
  • [1] Limit cycles of generalized Lienard equations
    [J]. Appl Math Lett, 6 (15):
  • [2] LIMIT CYCLES OF PERTURBED LIENARD EQUATIONS
    Makhlouf Amar
    Ouanas Nawel
    [J]. Annals of Applied Mathematics, 2013, 29 (02) : 177 - 187
  • [3] Configurations of limit cycles in Lienard equations
    Coll, B.
    Dumortier, F.
    Prohens, R.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (11) : 4169 - 4184
  • [4] Fixed and moving limit cycles for Lienard equations
    Gasull, Armengol
    Sabatini, Marco
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (06) : 1985 - 2006
  • [5] Limit cycles in discontinuous classical Lienard equations
    Martins, Ricardo Miranda
    Mereu, Ana Cristina
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 20 : 67 - 73
  • [6] Limit Cycles of a Class of Cubic Lienard Equations
    Jin, Huatao
    Shui, Shuliang
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2011, 10 (02) : 317 - 326
  • [7] LIMIT-CYCLES OF GENERALIZED LIENARD EQUATIONS
    LYNCH, S
    [J]. APPLIED MATHEMATICS LETTERS, 1995, 8 (06) : 15 - 17
  • [8] Alien limit cycles in Abel equations
    Alvarez, M. J.
    Bravo, J. L.
    Fernandez, M.
    Prohens, R.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 482 (01)
  • [9] LIMIT-CYCLES OF LIENARD EQUATIONS WITH NONLINEAR DAMPING
    URBINA, AM
    DELABARRA, GL
    DELABARRA, ML
    CANAS, M
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1993, 36 (02): : 251 - 256