Alien limit cycles in Lienard equations

被引:12
|
作者
Coll, B. [1 ]
Dumortier, F. [2 ]
Prohens, R. [1 ]
机构
[1] Univ Illes Balears, Dept Matemat & Informat, Palma De Mallorca 07122, Illes Balears, Spain
[2] Univ Hasselt, Dept Wiskunde, B-3590 Diepenbeek, Belgium
关键词
Planar vector field; Lienard equation; Hamiltonian perturbation; Limit cycle; Abelian integral; 2-Saddle cycle; HAMILTONIAN 2-SADDLE CYCLE; MATHEMATICAL PROBLEMS; ABELIAN-INTEGRALS;
D O I
10.1016/j.jde.2012.11.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper aims at providing an example of a family of polynomial Lienard equations exhibiting an alien limit cycle. This limit cycle is perturbed from a 2-saddle cycle in the boundary of an annulus of periodic orbits given by a Hamiltonian vector field. The Hamiltonian represents a truncated pendulum of degree 4. In comparison to a former polynomial example, not only the equations are simpler but a lot of tedious calculations can be avoided, making the example also interesting with respect to simplicity in treatment. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1582 / 1600
页数:19
相关论文
共 50 条
  • [21] A survey on the limit cycles of the generalized polynomial Lienard differential equations
    Llibre, Jaume
    [J]. MATHEMATICAL MODELS IN ENGINEERING, BIOLOGY AND MEDICINE, 2009, 1124 : 224 - 233
  • [22] Local bifurcations of limit cycles, Abel equations and Lienard systems
    Françoise, JP
    [J]. NORMAL FORMS, BIFURCATIONS AND FINITENESS PROBLEMS IN DIFFERENTIAL EQUATIONS, 2004, 137 : 187 - 209
  • [23] Limit cycles of Lienard systems
    Amar, M
    Sabrina, B
    [J]. PROCEEDINGS OF DYNAMIC SYSTEMS AND APPLICATIONS, VOL 4, 2004, : 297 - 301
  • [24] On the uniqueness of limit cycles surrounding one or more singularities for Lienard equations
    Dumortier, F
    Li, CZ
    [J]. NONLINEARITY, 1996, 9 (06) : 1489 - 1500
  • [25] THE NUMBER OF SMALL-AMPLITUDE LIMIT-CYCLES OF LIENARD EQUATIONS
    BLOWS, TR
    LLOYD, NG
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1984, 95 (MAR) : 359 - 366
  • [26] On the existence and uniqueness of limit cycles in Lienard differential equations allowing discontinuities
    Llibre, Jaume
    Ponce, Enrique
    Torres, Francisco
    [J]. NONLINEARITY, 2008, 21 (09) : 2121 - 2142
  • [27] LIMIT CYCLES OF CUBIC LIENARD EQUATION (Ⅱ)
    邱雅
    [J]. Annals of Applied Mathematics, 1994, (03) : 307 - 330
  • [28] Limit cycles of generalized Lienard systems
    Bouattia, Y.
    Makhlouf, A.
    [J]. MATHEMATICAL MODELS IN ENGINEERING, BIOLOGY AND MEDICINE, 2009, 1124 : 60 - 70
  • [29] On the hyperelliptic limit cycles of Lienard systems
    Liu, Changjian
    Chen, Guoting
    Yang, Jiazhong
    [J]. NONLINEARITY, 2012, 25 (06) : 1601 - 1611
  • [30] Number of limit cycles of the Lienard equation
    Giacomini, H
    Neukirch, S
    [J]. PHYSICAL REVIEW E, 1997, 56 (04): : 3809 - 3813