LIMIT CYCLES OF PERTURBED LIENARD EQUATIONS

被引:0
|
作者
Makhlouf Amar [1 ]
Ouanas Nawel [1 ]
机构
[1] Dept. of Math.,University of Annaba
关键词
limit cycle; Li′enard equation; averaging theory;
D O I
暂无
中图分类号
O175 [微分方程、积分方程]; O153.3 [环论];
学科分类号
070104 ;
摘要
We study the limit cycles of wide classes of perturbed Li′enard equations, which can be seen as a particular perturbation of the harmonic oscillator, using the averaging theory. We illustrate this study with many applications.
引用
收藏
页码:177 / 187
页数:11
相关论文
共 50 条
  • [1] Limit cycles of generalized Lienard equations
    [J]. Appl Math Lett, 6 (15):
  • [2] Alien limit cycles in Lienard equations
    Coll, B.
    Dumortier, F.
    Prohens, R.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (03) : 1582 - 1600
  • [3] Configurations of limit cycles in Lienard equations
    Coll, B.
    Dumortier, F.
    Prohens, R.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (11) : 4169 - 4184
  • [4] Fixed and moving limit cycles for Lienard equations
    Gasull, Armengol
    Sabatini, Marco
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (06) : 1985 - 2006
  • [5] Limit cycles in discontinuous classical Lienard equations
    Martins, Ricardo Miranda
    Mereu, Ana Cristina
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 20 : 67 - 73
  • [6] Limit Cycles of a Class of Cubic Lienard Equations
    Jin, Huatao
    Shui, Shuliang
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2011, 10 (02) : 317 - 326
  • [7] LIMIT-CYCLES OF GENERALIZED LIENARD EQUATIONS
    LYNCH, S
    [J]. APPLIED MATHEMATICS LETTERS, 1995, 8 (06) : 15 - 17
  • [8] LIMIT-CYCLES OF LIENARD EQUATIONS WITH NONLINEAR DAMPING
    URBINA, AM
    DELABARRA, GL
    DELABARRA, ML
    CANAS, M
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1993, 36 (02): : 251 - 256
  • [10] Limit cycles of the generalized polynomial Lienard differential equations
    Llibre, Jaume
    Mereu, Ana Cristina
    Teixeira, Marco Antonio
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2010, 148 : 363 - 383