Multi-label Arrhythmia Classification From 12-Lead Electrocardiograms

被引:5
|
作者
Hsu, Po-Ya [1 ]
Hsu, Po-Han [1 ]
Lee, Tsung-Han [1 ]
Liu, Hsin-Li [2 ]
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
[2] Cent Taiwan Univ Sci & Technol, Taichung, Taiwan
关键词
D O I
10.22489/CinC.2020.134
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
In participation of the PhysioNet/Computing in Cardiology Challenge 2020, we developed a novel computational approach for efficiently identifying cardiac abnormalities from 12-lead electrocardiogram (ECG) data. The developed methodology is composed of three processes: selecting representation, generating features, and predicting outcomes. We proposed a cache-inspired method to select a 12-lead ECG heartbeat representation. Moreover, we devised a physiologically interpretable feature generator for segmented 12-lead ECG signals. For multi-label arrhythmia classification, we innovated an efficient arrhythmia outcome prediction procedure that is adaptable to ECG data of variant lengths. Our team, JuJuRock, received a score of 0.402 using 5-fold cross-validation on the full training data and a score of 0.244 on the final full test data. Team JuJuRock ranked 16th out of the 41 teams that participated in this year's Challenge.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Utility of serial 12-lead electrocardiograms in children with Marfan syndrome
    Arunamata, Alisa A.
    Nguyen, Charles T.
    Ceresnak, Scott R.
    Dubin, Anne M.
    Olson, Inger L.
    Murphy, Daniel J.
    Tierney, Elif S. Selamet
    CARDIOLOGY IN THE YOUNG, 2018, 28 (08) : 1009 - 1013
  • [42] Multi-label Dysfluency Classification
    Jouaiti, Melanie
    Dautenhahn, Kerstin
    SPEECH AND COMPUTER, SPECOM 2022, 2022, 13721 : 290 - 301
  • [43] Multi-label Deepfake Classification
    Singh, Inder Pal
    Mejri, Nesryne
    Nguyen, Van Dat
    Ghorbel, Enjie
    Aouada, Djamila
    2023 IEEE 25TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, MMSP, 2023,
  • [44] Diagnostic accuracy of derived versus standard 12-lead electrocardiograms
    Horácek, BM
    Warren, JW
    St'ovícek, P
    Feldman, CL
    JOURNAL OF ELECTROCARDIOLOGY, 2000, 33 : 155 - 160
  • [45] Detection and delineation of P and T waves in 12-lead electrocardiograms
    Mehta, Sarabjeet
    Lingayat, Nitin
    Sanghvi, Sanjeev
    EXPERT SYSTEMS, 2009, 26 (01) : 125 - 143
  • [46] Detection of STEMI Using Prehospital Serial 12-Lead Electrocardiograms
    Tanguay, Alain
    Lebon, Johann
    Lau, Lorraine
    Hebert, Denise
    Begin, Francois
    PREHOSPITAL EMERGENCY CARE, 2018, 22 (04) : 419 - 426
  • [47] The use or prehospital 12-lead electrocardiograms In acute stroke patients
    Munro, S.
    Cooke, D.
    Joy, M.
    Quinn, T.
    CEREBROVASCULAR DISEASES, 2018, 45 : 391 - 391
  • [48] Dynamic changes of 12-lead electrocardiograms in a patient with Brugada syndrome
    Matsuo, K
    Shimizu, W
    Kurita, T
    Inagaki, M
    Aihara, N
    Kamakura, S
    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 1998, 9 (05) : 508 - 512
  • [49] EVALUATION OF A COMPUTER-PROGRAM FOR INTERPRETATION OF 12-LEAD ELECTROCARDIOGRAMS
    LANDELIUS, J
    NORDGREN, L
    UPSALA JOURNAL OF MEDICAL SCIENCES, 1979, 84 (01) : 37 - 46
  • [50] Calibrated Multi-label Classification with Label Correlations
    Zhi-Fen He
    Ming Yang
    Hui-Dong Liu
    Lei Wang
    Neural Processing Letters, 2019, 50 : 1361 - 1380