Graphene Tamm plasmon-induced enhanced and tunable photonic spin hall effect of reflected light in terahertz band

被引:14
|
作者
Tian, Haishan [1 ]
Yang, Yang [2 ]
Tang, Jiao [1 ]
Jiang, Leyong [1 ]
Xiang, Yuanjiang [3 ]
机构
[1] Hunan Normal Univ, Sch Phys & Elect, Changsha 410081, Peoples R China
[2] Shenzhen Univ, Inst Microscale Optoelect IMO, Shenzhen 518060, Peoples R China
[3] Hunan Univ, Sch Phys & Elect, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
Photonic spin hall effect; Graphene; Optical Tamm states; Photonic crystal; STATES;
D O I
10.1016/j.rinp.2021.104300
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In order to enhance the photonic spin hall effect (PSHE) of the reflected light at terahertz frequencies, we propose a multilayer structure where the one-dimensional photonic crystal (1D PC) is coated with a piece of monolayer graphene separated by a spacer layer. Enhanced photonic spin hall effects are obtained by this structure based on the excitation of optical Tamm states (OTSs) on the interface between the monolayer graphene and 1D PC. According to the analytical results, the PSHE of the reflected light can be flexibly controlled by properly varying the Fermi energy and relaxation time of graphene. It is also proved that the spin behavior of the composite structure has a great sensitivity to the incidence angle and the dispersion characteristics of the spacer layer, thus making the proposed structure a competitive candidate for designs of new photonic devices on the basis of photonic SHE at terahertz band.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] A multi-functional tunable terahertz graphene metamaterial based on plasmon-induced transparency
    Yang, Youpeng
    Fan, Shuting
    Zhao, Jingjing
    Xu, Jinzhuo
    Zhu, Jianfang
    Wang, Xiaoran
    Qian, Zhengfang
    DIAMOND AND RELATED MATERIALS, 2024, 141
  • [22] A Tunable Terahertz Graphene Metamaterial Sensor Based on Dual Polarized Plasmon-Induced Transparency
    Chen, Tao
    Liang, Dihan
    Jiang, Weijie
    IEEE SENSORS JOURNAL, 2022, 22 (14) : 14084 - 14090
  • [23] Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface
    Wang, Xianjun
    Meng, Hongyun
    Deng, Shuying
    Lao, Chaode
    Wei, Zhongchao
    Wang, Faqiang
    Tan, Chunhua
    Huang, Xuguang
    NANOMATERIALS, 2019, 9 (03):
  • [24] Tunable the spin Hall effect of light with graphene metamaterial
    Gao, C.
    Guo, B.
    OPTIK, 2018, 158 : 850 - 854
  • [25] Investigation of tunable plasmon-induced transparency and slow-light effect based on graphene bands
    Zhao, Mingzhuo
    Xu, Hui
    Xiong, Cuixiu
    Zheng, Mingfei
    Zhang, Baihui
    Xie, Wenke
    Li, Hongjian
    APPLIED PHYSICS EXPRESS, 2018, 11 (08)
  • [26] Tunable and enhanced photonic spin Hall effect of a superconductor film
    Song, Qi
    Da, Haixia
    OPTICS COMMUNICATIONS, 2021, 499
  • [27] Dynamically tunable plasmon-induced transparency effect based on graphene metasurfaces
    Chen, Shuxian
    Li, Junyi
    Guo, Zicong
    Chen, Li
    Wen, Kunhua
    Xu, Pengbai
    Yang, Jun
    Qin, Yuwen
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (11)
  • [28] Tunable plasmon-induced transparency and slow light in terahertz chipscale semiconductor plasmonic waveguides
    Zhang, Zhaojian
    Yang, Junbo
    He, Xin
    Han, Yunxin
    Huang, Jie
    Chen, Dingbo
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (31)
  • [29] Optimized graphene metamaterial for dual plasmon-induced transparency in terahertz band with multifunctional applications
    Chai, Jinyuan
    Lin, Zefan
    Kang, Guoguo
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2024, 57 (50)
  • [30] Broadband plasmon-induced transparency modulator in the terahertz band based on multilayer graphene metamaterials
    Zhang, Zhenbin
    Liu, Zhimin
    Zhou, Fengqi
    Wang, Jiawei
    Wang, Yuqing
    Zhang, Xiao
    Qin, Yipeng
    Zhuo, Shanshan
    Luo, Xin
    Gao, Enduo
    Yi, Zao
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2021, 38 (06) : 784 - 789