Dynamically tunable plasmon-induced transparency effect based on graphene metasurfaces

被引:14
|
作者
Chen, Shuxian [1 ]
Li, Junyi [1 ]
Guo, Zicong [1 ]
Chen, Li [1 ,3 ]
Wen, Kunhua [1 ,3 ]
Xu, Pengbai [2 ,3 ]
Yang, Jun [2 ,3 ]
Qin, Yuwen [2 ,3 ]
机构
[1] Guangdong Univ Technol, Sch Phys & Optoelect Engn, Guangzhou 510006, Peoples R China
[2] Guangdong Univ Technol, Sch Informat Engn, Guangzhou 510006, Peoples R China
[3] Guangdong Univ Technol, Guangdong Prov Key Lab Informat Photon Technol, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
graphene; plasmon-induced transparency; optical switch; high sensitivity; mode; TERAHERTZ; EXCITATION; SWITCH;
D O I
10.1088/1361-6463/ac3f5b
中图分类号
O59 [应用物理学];
学科分类号
摘要
Plasmon-induced transparency (PIT) is theoretically explored for a graphene metamaterial using finite-difference time-domain numerical simulations and coupled-mode-theory theoretical analysis. In this work, the proposed structure consists of one rectangular cavity and three strips to generate the PIT phenomenon. The PIT window can be regulated dynamically by adjusting the Fermi level of the graphene. Importantly, the modulation depth of the amplitude can reach 90.4%. The refractive index sensitivity of the PIT window is also investigated, and the simulation results show that a sensitivity of 1.335 THz RIU-1 is achieved. Additionally, when the polarization angle of the incident light is changed gradually from 0 degrees to 90 degrees, the performance of the structure is greatly affected. Finally, the proposed structure is particularly enlightening for the design of dynamically tuned terahertz devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Dynamically Tunable Graphene Plasmon-Induced Transparency in the Terahertz Region
    Yao, Gang
    Ling, Furi
    Yue, Jin
    Luo, Qin
    Yao, Jianquan
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2016, 34 (16) : 3937 - 3942
  • [2] Controlled and tunable plasmon-induced transparency based on graphene metasurfaces in atmospheric windows
    Chen, Hongting
    Zhang, Zhaojian
    Yang, Junbo
    Zhou, Zigang
    [J]. DIAMOND AND RELATED MATERIALS, 2022, 127
  • [3] Dynamically tunable optical properties in graphene-based plasmon-induced transparency metamaterials
    贾微
    任佩雯
    田雨宸
    范春珍
    [J]. Chinese Physics B, 2019, (02) : 363 - 368
  • [4] Dynamically Tunable Plasmon-Induced Transparency Based on an H-Shaped Graphene Resonator
    Xiang, Yulin
    Zhai, Xiang
    Lin, Qi
    Xia, Shengxuan
    Qin, Meng
    Wang, Lingling
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2018, 30 (07) : 622 - 625
  • [5] Dynamically tunable optical properties in graphene-based plasmon-induced transparency metamaterials
    Jia, Wei
    Ren, Pei-Wen
    Tian, Yu-Chen
    Fan, Chun-Zhen
    [J]. CHINESE PHYSICS B, 2019, 28 (02)
  • [6] Tunable plasmon-induced transparency with graphene-based T-shaped array metasurfaces
    Niu, Yuying
    Wang, Jicheng
    Hu, Zhengda
    Zhang, Feng
    [J]. OPTICS COMMUNICATIONS, 2018, 416 : 77 - 83
  • [7] Dynamically Tunable Plasmon-Induced Transparency in Planar Metamaterials
    Song, Jiakun
    Liu, Jietao
    Li, Kangwen
    Song, Yuzhi
    Wei, Xin
    Song, Guofeng
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2014, 26 (11) : 1104 - 1107
  • [8] Dynamically Tunable Terahertz Plasmon-Induced Transparency Analogy Based on Asymmetric Graphene Resonator Arrays
    Bo Ni
    Guangsuo Tai
    Haibin Ni
    Lingsheng Yang
    Heng Liu
    Lingli Huang
    Jiang Wang
    Jianhua Chang
    [J]. Plasmonics, 2022, 17 : 389 - 398
  • [9] Dynamically Tunable Terahertz Plasmon-Induced Transparency Analogy Based on Asymmetric Graphene Resonator Arrays
    Ni, Bo
    Tai, Guangsuo
    Ni, Haibin
    Yang, Lingsheng
    Liu, Heng
    Huang, Lingli
    Wang, Jiang
    Chang, Jianhua
    [J]. PLASMONICS, 2022, 17 (01) : 389 - 398
  • [10] Dynamically tunable plasmon-induced transparency in waveguide based on Dirac semimetal
    Li, Yong
    Wang, Shiyu
    Ou, Yanghong
    Lin, Qi
    Zhai, Xiang
    Li, Hongjian
    Liu, Huangqing
    Wang, Lingling
    [J]. EPL, 2021, 133 (04)