Combinatorial proof of the log-concavity of the sequence of matching numbers

被引:8
|
作者
Krattenthaler, C
机构
关键词
D O I
10.1006/jcta.1996.0058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For k greater than or equal to l we construct an injection from the set of pairs of matchings in a given graph G of sizes l - 1 and k + 1 into the set of pairs of matchings in G of sizes l and k. This provides a combinatorial proof of the log-concavity of the sequence of matching numbers of a graph. Besides, this injection implies that a certain weighted version of the matching numbers is strongly x-log-concave in the sense of Sagan. (C) 1996 Academic Press, Inc.
引用
收藏
页码:351 / 354
页数:4
相关论文
共 50 条
  • [21] A local injective proof of log-concavity for increasing spanning forests
    Abdesselam, Abdelmalek
    DISCRETE MATHEMATICS, 2023, 346 (12)
  • [22] The log-concavity of the q-derangement numbers of type B
    Liu, Eric H.
    Du, Wenjing
    OPEN MATHEMATICS, 2018, 16 : 127 - 132
  • [23] Combinatorial conjectures that imply local log-concavity of graph genus polynomials
    Gross, Jonathan L.
    Mansour, Toufik
    Tucker, Thomas W.
    Wang, David G. L.
    EUROPEAN JOURNAL OF COMBINATORICS, 2016, 52 : 207 - 222
  • [24] Negative association does not imply log-concavity of the rank sequence
    Markstrom, Klas
    JOURNAL OF APPLIED PROBABILITY, 2007, 44 (04) : 1119 - 1121
  • [25] On Multiple and Infinite Log-Concavity
    Luis A. Medina
    Armin Straub
    Annals of Combinatorics, 2016, 20 : 125 - 138
  • [26] Log-concavity of the genus polynomials for a sequence of cubic Halin graphs
    Gross, Jonathan L.
    Mansour, Toufik
    Tucker, Thomas W.
    JOURNAL OF COMBINATORICS, 2014, 5 (02) : 203 - 233
  • [27] On the log-concavity of the sequence {n√Sn}n=1∞ for some combinatorial sequences {Sn}n=0∞
    Xia, Ernest X. W.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (04) : 881 - 892
  • [28] On the Log-Concavity of the Wright Function
    Ferreira, Rui A. C.
    Simon, Thomas
    CONSTRUCTIVE APPROXIMATION, 2023, 60 (2) : 309 - 338
  • [29] Log-Concavity of the Alexander Polynomial
    Hafner, Elena S.
    Meszaros, Karola
    Vidinas, Alexander
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (13) : 10273 - 10284
  • [30] Log-concavity of the partition function
    DeSalvo, Stephen
    Pak, Igor
    RAMANUJAN JOURNAL, 2015, 38 (01): : 61 - 73