A local injective proof of log-concavity for increasing spanning forests

被引:2
|
作者
Abdesselam, Abdelmalek [1 ]
机构
[1] Univ Virginia, Dept Math, POB 400137, Charlottesville, VA 22904 USA
关键词
Log-concavity; Bijective combinatorics; Spanning forests; Stirling numbers; SEQUENCES; NUMBERS;
D O I
10.1016/j.disc.2023.113651
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an explicit combinatorial proof of a weighted version of strong log-concavity for the generating polynomial of increasing spanning forests of a finite simple graph equipped with a total ordering of the vertices. In contrast to similar proofs in the literature, our injection is local in the sense that it proceeds by moving a single edge from one forest to the other. In the particular case of the complete graph, this gives a new combinatorial proof of log-concavity of unsigned Stirling numbers of the first kind where a pair of permutations is transformed into a new pair by breaking a single cycle in the first permutation and gluing two cycles in the second permutation, while all the other cycles are left untouched.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Log-concavity and strong log-concavity: A review
    Saumard, Adrien
    Wellner, Jon A.
    STATISTICS SURVEYS, 2014, 8 : 45 - 114
  • [3] A computer proof of Moll's log-concavity conjecture
    Kauers, Manuel
    Paule, Peter
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (12) : 3847 - 3856
  • [4] Nested Log-Concavity
    Llamas, Aurora
    Martinez-Bernal, Jose
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (05) : 1968 - 1981
  • [5] A combinatorial proof of the log-concavity of the numbers of permutations with k runs
    Bóna, M
    Ehrenborg, R
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 90 (02) : 293 - 303
  • [6] Schur positivity and log-concavity related to longest increasing subsequences
    Gao, Alice L. L.
    Xie, Matthew H. Y.
    Yang, Arthur L. B.
    DISCRETE MATHEMATICS, 2019, 342 (09) : 2570 - 2578
  • [7] On Multiple and Infinite Log-Concavity
    Luis A. Medina
    Armin Straub
    Annals of Combinatorics, 2016, 20 : 125 - 138
  • [8] On the Log-Concavity of the Wright Function
    Ferreira, Rui A. C.
    Simon, Thomas
    CONSTRUCTIVE APPROXIMATION, 2023, 60 (2) : 309 - 338
  • [9] Log-Concavity of the Alexander Polynomial
    Hafner, Elena S.
    Meszaros, Karola
    Vidinas, Alexander
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (13) : 10273 - 10284
  • [10] Log-concavity of the partition function
    DeSalvo, Stephen
    Pak, Igor
    RAMANUJAN JOURNAL, 2015, 38 (01): : 61 - 73