Combinatorial proof of the log-concavity of the sequence of matching numbers

被引:8
|
作者
Krattenthaler, C
机构
关键词
D O I
10.1006/jcta.1996.0058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For k greater than or equal to l we construct an injection from the set of pairs of matchings in a given graph G of sizes l - 1 and k + 1 into the set of pairs of matchings in G of sizes l and k. This provides a combinatorial proof of the log-concavity of the sequence of matching numbers of a graph. Besides, this injection implies that a certain weighted version of the matching numbers is strongly x-log-concave in the sense of Sagan. (C) 1996 Academic Press, Inc.
引用
收藏
页码:351 / 354
页数:4
相关论文
共 50 条
  • [1] A combinatorial proof of the log-concavity of the numbers of permutations with k runs
    Bóna, M
    Ehrenborg, R
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 90 (02) : 293 - 303
  • [2] Combinatorial proofs of inverse relations and log-concavity for Bessel numbers
    Han, Hyuk
    Seo, Seunghyun
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (07) : 1544 - 1554
  • [3] On the Log-Concavity of the Hyperfibonacci Numbers and the Hyperlucas Numbers
    Zheng, Li-Na
    Liu, Rui
    Zhao, Feng-Zhen
    JOURNAL OF INTEGER SEQUENCES, 2014, 17 (01)
  • [4] The ratio log-concavity of the Cohen numbers
    Eric H Liu
    Lily J Jin
    Journal of Inequalities and Applications, 2016
  • [5] An Analogue of Mahonian Numbers and Log-Concavity
    Ghemit, Yousra
    Ahmia, Moussa
    ANNALS OF COMBINATORICS, 2023, 27 (04) : 895 - 916
  • [6] The ratio log-concavity of the Cohen numbers
    Liu, Eric H.
    Jin, Lily J.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [7] ON THE LOG-CONCAVITY OF THE DEGENERATE BERNOULLI NUMBERS
    Luca, Florian
    Young, Paul Thomas
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (03) : 789 - 800
  • [8] An Analogue of Mahonian Numbers and Log-Concavity
    Yousra Ghemit
    Moussa Ahmia
    Annals of Combinatorics, 2023, 27 : 895 - 916
  • [9] Log-concavity and strong log-concavity: A review
    Saumard, Adrien
    Wellner, Jon A.
    STATISTICS SURVEYS, 2014, 8 : 45 - 114
  • [10] Bell numbers, log-concavity, and log-convexity
    Asai, N
    Kubo, I
    Kuo, HH
    ACTA APPLICANDAE MATHEMATICAE, 2000, 63 (1-3) : 79 - 87