On Multiple and Infinite Log-Concavity

被引:0
|
作者
Luis A. Medina
Armin Straub
机构
[1] University of Puerto Rico,Department of Mathematics
[2] University of Illinois at Urbana-Champaign,Department of Mathematics
[3] Max-Planck-Institut für Mathematik,undefined
来源
Annals of Combinatorics | 2016年 / 20卷
关键词
log-concavity; linear recurrences; convolution; 05A20; 39B12;
D O I
暂无
中图分类号
学科分类号
摘要
Following Boros-Moll, a sequence (an) is m-log-concave if Lj(an)⩾0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}^{j}(a_{n})\geqslant0}$$\end{document} for all j =  0, 1, . . . , m. Here, L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document} is the operator defined by L(an)=an2-an-1an+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}(a_{n}) = a^{2}_{n}-a_{n-1}a_{n+1}}$$\end{document}. By a criterion of Craven-Csordas and McNamara-Sagan it is known that a sequence is ∞-log-concave if it satisfies the stronger inequality ak2⩾rak-1ak+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a^{2}_{k}\geqslant ra_{k-1}a_{k+1}}$$\end{document} for large enough r. On the other hand, a recent result of Brändén shows that ∞-log-concave sequences include sequences whose generating polynomial has only negative real roots. In this paper, we investigate sequences which are fixed by a power of the operator L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document} and are therefore ∞-log-concave for a very different reason. Surprisingly, we find that sequences fixed by the non-linear operators L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document} and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}^{2}}$$\end{document} are, in fact, characterized by a linear 4-term recurrence. In a final conjectural part, we observe that positive sequences appear to become ∞-log-concave if convoluted with themselves a finite number of times.
引用
收藏
页码:125 / 138
页数:13
相关论文
共 50 条
  • [1] On Multiple and Infinite Log-Concavity
    Medina, Luis A.
    Straub, Armin
    ANNALS OF COMBINATORICS, 2016, 20 (01) : 125 - 138
  • [2] Infinite log-concavity: Developments and conjectures
    McNamara, Peter R. W.
    Sagan, Bruce E.
    ADVANCES IN APPLIED MATHEMATICS, 2010, 44 (01) : 1 - 15
  • [3] Log-concavity and strong log-concavity: A review
    Saumard, Adrien
    Wellner, Jon A.
    STATISTICS SURVEYS, 2014, 8 : 45 - 114
  • [4] Log-concavity of infinite product generating functions
    Heim, Bernhard
    Neuhauser, Markus
    RESEARCH IN NUMBER THEORY, 2022, 8 (03)
  • [5] Log-concavity of infinite product generating functions
    Bernhard Heim
    Markus Neuhauser
    Research in Number Theory, 2022, 8
  • [6] INFINITE LOG-CONCAVITY FOR POLYNOMIAL POLYA FREQUENCY SEQUENCES
    Branden, Petter
    Chasse, Matthew
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (12) : 5147 - 5158
  • [7] Nested Log-Concavity
    Llamas, Aurora
    Martinez-Bernal, Jose
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (05) : 1968 - 1981
  • [8] On the Log-Concavity of the Wright Function
    Ferreira, Rui A. C.
    Simon, Thomas
    CONSTRUCTIVE APPROXIMATION, 2023, 60 (2) : 309 - 338
  • [9] Log-Concavity of the Alexander Polynomial
    Hafner, Elena S.
    Meszaros, Karola
    Vidinas, Alexander
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (13) : 10273 - 10284
  • [10] Log-concavity of the partition function
    DeSalvo, Stephen
    Pak, Igor
    RAMANUJAN JOURNAL, 2015, 38 (01): : 61 - 73